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SUMMARY

This dissertation is an initial study of how modern engineering control may be ap-

plied to reverse engineer homeostasis in metabolic pathways using high-throughput biolog-

ical data. This attempt to reconcile differences between engineering control and biological

homeostasis from an interdisciplinary perspective is motivated not only by the observation

that robust behavior in metabolic pathways resembles stabilized dynamics in controlled sys-

tems, but also by the challenges forewarned in achieving a true meeting of minds between

engineers and biologists.

To do this, a comparator model is developed and applied to model the effect of single-

gene (SPT) overexpression on C16:0 sphingolipid de novo biosynthesis in vitro, specifically

to simulate and predict potential homeostatic pathway interactions between the sphin-

golipid metabolites. Sphingolipid de novo biosynthesis is highly regulated because its path-

way intermediates are highly bioactive. Alterations in sphingolipid synthesis, storage, and

metabolism are implicated in human diseases. In addition, when variation in structure is

considered, sphingolipids are one of the most diverse and complex families of biomolecules.

To complete the modeling paradigm, wild type cells are defined as the reference that exhibits

the ”desired” pathway dynamics that the treated cells approach.

Key model results show that the proposed modern engineering control approach using

a comparator to reverse engineer homeostasis in metabolic systems is: (a) effective in cap-

turing observed pathway dynamics from experimental data, with no significant difference

in precision from existing models, (b) robust to potential errors in estimating state-space

parameters as a result of sparse data, (c) generalizable to model other metabolic systems,

as demonstrated by testing on a separate independent dataset, and (d) biologically relevant

in terms of predicting steady-state feedback as a result of homeostasis that is verified in

literature and with additional independent data from drug dosage experiments.
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CHAPTER I

INTRODUCTION: ROBUSTNESS IN METABOLIC SYSTEMS

Recent advancements in high-throughput biotechnology enable, and in fact necessitate,

matching developments in the field of biology. Specifically, studies in genomics, proteomics,

and metabolomics require comparable methods for data mining in order to handle vast

volumes of biological data that can otherwise prove unwieldy. Furthermore, recognizing the

opportunity to use this wealth of data to ”understand biology at the system level” [77],

’-omic’ technology has also led to the emergence of ”systems biology”, which is focused on

the abstraction of data, or modeling [124].

As an engineer-in-training, it is my intuition that ”control” is integral to a system-level

understanding of biology. More precisely, the premise of control in biology, in particular

systems biology, is that robust behaviors in biological systems resembles stabilized dynamics

in engineering systems under control. Consequently, control theory is essential to, and

should complement, the study of systems biology.

A number of opportunities and challenges may emerge from systems biology for control

theory, which can be broadly classified in four categories [146]. They are: (a) the role

of control and signal processing techniques in bioinstrumentation, (b) the use of existing

techniques in well-developed areas of control theory to analyze problems of interest to

biologists, (c) the abstraction of new ideas for control engineering from biology, and (d) the

formulation of new theoretical problems in control theory.

This dissertation is focused on the second category of problems. In particular, using

lipidomic data on a metabolic pathway that is reported to be highly regulated in nature,

a comparator is developed and applied to model the differences between treated and wild

type cells, under the assumption that treated cells approach the same steady-state as the

wild type in terms of intracellular lipid amounts. Thus, in this case, the effect of the applied

comparator is to predict pathway feedback that may be responsible to maintain pathway
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stability under a specific treatment condition.

1.1 Mechanisms of metabolic robustness: emergence and design

Biological robustness refers to the persistence of living organisms to maintain certain traits

or behaviors under changing, and often times unfavorable, conditions [78, 94]. Specifically,

phenotypic robustness refers to the ability of living organisms to adapt, reproduce, and

evolve to changes in the environment over time as a result of genetic mutation, while com-

ponent robustness refers to the persistence of metabolic function in living organisms under

dynamic and relatively short-lived conditions in the micro-environment. The distinction

between these sub-definitions occurs in terms of scale in space and time, where phenotypic

robustness spans the levels of cell to population over multiple generation times while compo-

nent robustness is generally limited to the cell level within a single generation. Component

robustness, or robustness in biochemical systems, is the focus of this section.

Robustness in biochemical systems is an increasingly popular research topic for two

reasons. First, it is a ubiquitous property, i.e., it is readily observed, e.g., in glycolysis [53],

energy metabolism [32], protein synthesis [15], mitochondrial apoptosis [62], and chemotaxis

[13, 176, 63]. Second, with sufficient understanding of the underlying mechanisms, it may be

manipulated to serve the prevailing needs of society, e.g., for disease treatment [10, 79, 108,

154], in particular drug development [66, 68, 80, 101, 100]. For the latter reason, the public

literature on this topic to date comprises mostly studies on representative mechanisms of

robustness such as hierarchy [151], modularity and redundancy [97, 114], stochasticity [130],

connectivity (and topology) [94], and more recently, feedback (and feedforward) control

[56, 172]. Yet, insofar as such mechanisms are well-documented, there is comparatively

little question (and even fewer answers) on the conception of robustness; furthermore, on

how underlying assumptions on conception may bias the choice of one apparent mechanism,

or few combined, over others to explain and perhaps in future to enable the robustness

property in biochemical systems. Although not often discussed explicitly, a review of the

public literature suggests that robustness in biochemical systems may be attributed to one

of two notions: emergence and design.
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In the context of systems theory, ’emergence’ refers to the ’coming out’ of more complex

behaviors from simpler parts, especially where such ’higher’ properties cannot be reasonably

deduced from its ’lower’ component interactions (see Bedau [18] for a more rigorous, and

philosophical, treatment as well as the difference between strong and weak emergence). In

other words, emergence is ’bottom-up’. In many instances, emergence is synonymous with

synergy, where the oft-encountered phrase ”the whole is greater than the sum of its parts”

is an acceptable though simplified description of the phenomena. From the aforementioned

list, mechanisms of robustness in biochemical systems that are implied to arise as a result

of emergence include hierarchy, modularity and redundancy, stochasticity, and connectivity

and topology.

On the other hand, ’design’ refers to the specification of a particular construct, or set

of constructs, to accomplish specific objectives under certain constraints [136]. In a well-

designed system, various components are integrated to perform a well-defined function. In

other words, design is ’top-down’. The apparently seamless combination of parts to serve a

single purpose in a well-designed system has sparked a lively discussion of irreducible com-

plexity throughout the years [19, 113], which is also implicated in the debate on evolution

versus intelligent design. The point being that robustness of biochemical systems by ’de-

sign’ implies, or in some perspectives necessitates, the existence of a designer (an argument

better left for the interested reader to explore separately) or an almost incredible confluence

of events. To reconcile this rather awkward implication with mainstream support for the

theory of evolution, it is worthwhile to consider that perhaps ’welding points’ in robust

biochemical systems may have ’eroded’ over time such that prior steps in evolution are not

detectable, which makes robustness by design the best explanation. As a recently proposed

mechanism of robustness, feedback (and feedforward) control may be attributed to design.

Here, the question of whether the property of robustness in biochemical systems is

conceived from emergence or design is a basis to discuss the strength and implications of

a decision to pursue one resultant mechanism, or few combined, over others to explain the

phenomenon, not a mirror of the debate on evolution versus intelligent design. Although

not often acknowledged, the starting point and subsequent path of research on robustness
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in biochemical systems is naturally affected by the assumption, indeed acceptance, of either

emergence or design as its basis.

What follows in this section is a survey of the robustness property in biochemical systems

in terms of the aforementioned mechanisms, i.e., hierarchy, modularity and redundancy,

stochasticity, connectivity and topology, and feedback (and feedforward) control; their as-

sumed basis in emergence or design, and theoretical tradeoffs in implementing these mech-

anisms leading to the intriguing ’robust yet fragile’ feature of such systems [5, 41, 83, 82].

To facilitate discussion, robustness of biochemical systems in this context shall refer to the

ability of a cell signaling system to function reliably despite changes in effective molecular

concentrations, i.e., to produce a desired output response if and only if there is an appro-

priate input stimulus. Finally, based on knowledge of these representative mechanisms, the

future of research in biochemical robustness and its applications is discussed.

1.1.1 Hierarchy

Hierarchy refers to the stratification of component molecules into different biochemical levels

of organization, e.g., genes (nucleotides), enzymes (proteins), and metabolites (lipids and

carbohydrates) [157]. Specifically, order is enforced in the hierarchy where ’higher-order’

molecules govern the action of ’lower-order’ molecules, e.g., genes code for enzymes that act

in turn on metabolites. Furthermore, signals from higher-order molecules are amplified in

lower-order levels, e.g., a single strand of messenger RNA can be translated repeatedly to

produce multiple enzymes. This cascade effect in cell signaling systems also implies that it

is easier for signal transmission to occur in one direction from higher-order to lower-order

molecules than the opposite.

Based on these features of stratification, ordering, and cascade effect, hierarchy as a

mechanism ensures system robustness in two ways. First, by effectively compartmentalizing

the functional molecules, weaknesses and failures are contained within particular levels when

they occur. Second, by enforcing order and directional bias, variations in amounts of lower-

order molecules, which occur most frequently, are not as easily propagated to higher-order

molecules. In addition, because of the amplification cascade, hierarchy can also aid in
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minimizing the cost of cell signaling where energy needed for transcription is higher than

for translation. The bow-tie architecture observed in cell signaling systems illustrates these

features of hierarchy as a mechanism of robustness in biochemical systems [80], where the

knot in the middle represents higher-order molecules while the ends of the bow represents

lower-order molecules.

At the same time, there are tradeoffs in implementing hierarchy as a mechanism of

system robustness. First, in demarcating clearly stratified levels, there is an equivalent need

to develop protocols to communicate between the corresponding levels [33]. For example,

transcription and translation are protocols to facilitate communication between DNA, RNA,

and enzymes. It follows that cell signaling, which traverses various biochemical levels, relies

heavily on the efficacy of these protocols. Thus, while necessary, such protocols are points of

weakness and fragility in the system. Second, because higher-order molecules govern lower-

order molecules, additional fragility and risk is introduced to the system when perturbations

can occur at the level of higher-order molecules, e.g., in virus infections where foreign DNA

is introduced into the host cell and mistakenly replicated. Perturbations at this level are also

more readily propagated and amplified because of the cascade effect. Third, also because of

the cascade effect, sensitivity and signaling speed are lower because of an effective directional

bias against signaling from lower-order to higher-order molecules. For instance in sensing,

i.e., where signals are initiated by lower-order molecules, a higher stimulus threshold is

required to generate an output response, e.g., in terms of sustained receptor activation over

time or simultaneous activation of multiple receptors.

Hierarchy as a mechanism for robustness due to emergence may be supported by the

endosymbiotic theory [84]. On this basis, it follows that to establish hierarchy as the

mechanism of robustness for a given biochemical system it is critical to (1) identify and

establish order between groups of functionally dissimilar or at least non-interchangeable

molecules, and (2) discern the molecular protocols for communication between levels.
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1.1.2 Modularity and redundancy

Modularity refers to the autonomy of component molecules, usually in self-contained func-

tional groups, to perform specific actions that contribute towards the overall system objec-

tive. The trivial definition is that an individual enzymatic reaction is a module in a series of

reactions that accomplishes a specific metabolic function. Modules in a given system may

also be ordered, i.e., hierarchical, but not necessarily so. Modularity alone does not guar-

antee robustness and must be complemented by redundancy [114, 166], i.e., many modules

exist to perform the same functions in a system. Thus, taken together, these features of

modularity and redundancy ensure robustness in biochemical systems.

Modularity and redundancy are similar to hierarchy but key differences exist. First,

modularity resembles hierarchy in terms of autonomy but modules are not necessarily hier-

archical. The feature of being ’self-contained’ ensures that failed modules are functionally

removed from the system and do not interfere with overall system performance. At the

same time, redundancy ensures that there are other modules that accomplish the same

function to fill the void. Second, redundancy differs from the cascade effect in that the

extent of redundancy is the same for all modules whereas in the cascade effect, duplication

occurs only for some components, which are also largely lower-order molecules. As a result,

redundancy does not also facilitate signal amplification unlike the cascade effect.

There are also two main issues in implementing modularity and redundancy as a mech-

anism for robustness in biochemical systems. First, in maintaining redundancy, it is costly

because resources must be dedicated to create more than one component to perform the

same function. Second, to ensure modularity also implies separating defined modules, which

may difficult to do in the crowded molecular environment of the cytoplasm. As a result,

the fragility of this mechanism for robustness is that biochemically similar molecules from

one functional module may interfere or compete with molecules in another, leading to un-

intended system performance. These issues may be resolved where if modularity can be

defined and implemented efficiently, then modules that perform functions common to sev-

eral systems may also be shared. The sharing of such common modules may then balance
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the additional costs required to maintain redundancy. In these considerations, function-

ality is the basis on which modularity and redundancy as a mechanism for robustness in

biochemical systems may be attributed to emergence [97]. Thus, the challenge in research

on modularity and redundancy as a mechanism for robustness in biochemical systems is to

clearly define appropriate functional units while allowing for the possibility of duplication.

1.1.3 Stochasticity

Stochasticity in biochemical systems refers to the probabilistic nature of biochemical reac-

tions as a result of the unpredictable motion of molecules [130, 131]. As a mechanism for

robustness, stochasticity depends on maintaining threshold concentrations of molecules so

that rates of reaction in a biochemical system remain effective to accomplish system func-

tion despite low odds of collision for individual molecules. At the same time, the stochastic

nature of biochemical reactions also minimizes the probability of ’rogue’ reactions as a re-

sult of perturbation by biochemically similar but functionally different molecules, i.e., by

decreasing sensitivity.

Because of its probabilistic nature, stochasticity as a mechanism for robustness in bio-

chemical systems suggests some readily observable features. First, such systems must be

relatively simple. The low odds of reaction implies that theoretically, there is a limit on

the number of reactions for a biochemical system to be robust via stochasticity. Second, to

increase the odds of reaction in an already crowded cytoplasm, requisite molecules may be

sequestered to maintain optimal concentrations. This may manifest in terms of increased

number of vesicles in the cytoplasm or extensive use of existing organelles for compart-

mentalization. Third, the ’induced fit’ theory of enzymatic action suggests that enzyme

specificity may be relaxed for reactions in such systems to ensure overall system function.

So, enzymes involved in such robust systems by stochasticity may be less specific in substrate

recognition compared to other enzymes. Last, cofactor binding or positive cooperativity in

enzymatic action may also increase the odds of reaction, which is another empirical feature.
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From these features, it follows that stochasticity as a mechanism for robustness in bio-

chemical systems can be attributed to emergence from component enzymatic reactions. In-

terestingly, the probabilistic nature of biochemical reactions also confers a degree of fragility

as a result of a few ’stiff’ combinations of parameters [36], which may require other consid-

erations to overcome, e.g., by including other structural elements [9].

1.1.4 Connectivity and topology

Connectivity is a concept of graph theory that refers in general to the minimum number

of nodes or edges to be removed before a network is disconnected. A more robust graph,

or network, requires more network elements to be removed before it is disconnected. As

a measure of robustness in graph theory, connectivity is also a mechanism of robustness

in biochemical systems because of the nature of linkage in biochemical systems, e.g., gene,

metabolic, and protein-protein interactions, specifically in terms of topology [6, 94, 175]. In

particular, the scale-free topology of biochemical systems is directly linked to robustness in

biochemical systems [4, 14, 153].

At its core, connectivity in biochemical systems is measured in terms of the frequency of

nodes that are associated with specific number of edges, i.e., degree distribution. In random

networks, the degree distribution resembles a Poisson distribution that peaks at the average

degree. This means that because the edges are placed randomly in a random network, most

nodes have similar numbers of edges. However, in real networks, e.g., biochemical networks,

the degree distribution resembles a power-law distribution that deviates significantly from

the Poisson distribution. This means that a small number of nodes are connected to many

nodes, i.e., hubs, while a large number of nodes are connected to fewer nodes.

Assuming an equal chance of failure for individual nodes, robustness in biochemical

systems is ensured as a result of scale-free topology because in this topology there are sig-

nificantly fewer hubs compared to other less connected nodes. Thus, the basis of robustness

in biochemical systems is emergence from the nature of linkage, or topology, between compo-

nent molecules. It follows that the effect of connectivity to ensure robustness is appreciable

only in large systems or networks where the ratio of hubs to nodes is non-trivial, e.g., the
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World Wide Web, the Internet, and cells [2]. At the same time, while scale-free topology

confers high error tolerance, i.e., robustness to high failure rates of nodes in general but is

vulnerable to attacks, i.e., when a hub breaks down or is removed [3, 70]. It remains to

be seen if other topologies, i.e., connectivity in terms of different degree distributions, may

also facilitate robustness in biochemical systems.

1.1.5 Feedback and feedforward control

Feedback control, also known as ’closed-loop’ control, refers to the use of current output to

regulate future output [17, 173]. To do this, sensor units sample the system output at the

present time, which is relayed to actuator units to guide or regulate system output at the

next time, thus ’closing the loop’. Although well developed in control theory, the concept of

feedback control entered mainstream research only recently in the context of robustness in

biochemical systems [71, 146, 168]. This may be in part because of difficulties in reconciling

its basis by (intelligent) design with support for the theory of evolution; the corollary is

that there has been more attention on mechanisms of robustness based on emergence than

on design as seen in the literature. Since then the concept of feedback control has been

readily developed in the context of biochemical systems, e.g., in terms of concentration and

buffering, [138, 143], homeostasis [37], and gene regulation [43, 142].

The feature of feedback control in biochemical systems is that sensor and actuator units

are used to sample and incorporate the current output into the system dynamics to guide

future output. This system architecture forms a closed loop between current and future

outputs, which ensures robustness by guiding the output to converge to the desired state.

Specifically, based on the difference between current output and the desired state from the

sensor unit, the actuator unit regulates the system to generate future output that is closer

to the desired state. This cycle terminates when the current output and desired state are

the same. Thus, the effectiveness, and corresponding fragility, of feedback control as a

mechanism for robustness depends on the design of sensor and actuator units [76].

There are various different ways to implement feedback control in biochemical systems,
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e.g., proportional, integral, and derivative (PID) feedback in energy metabolism [32], in-

tegral feedback in bacterial chemotaxis [7, 177], and multiple feedback loops in E. coli

tryptophan regulation [22]. Consequently, it can be difficult to determine the exact form

that is responsible for robustness in a given biochemical system. This issue arises because,

from the perspective of design, the various forms of feedback control are sufficient but not

necessary to ensure robustness. Nonetheless, in the research of feedback control as a mech-

anism of robustness in biochemical systems, this challenge can still be overcome by the

process of elimination, i.e., to first assume a specific form of feedback control and then test

for particular dynamic features that are associated with it [103].

In addition to feedback control, feedforward control is also a form of control that ensures

robustness in biochemical systems. In feedforward control, the input stimulus is not only

received by the immediate system module, e.g., receptor, but is also relayed ahead to one

or more subsequent modules. In other words, the input stimulus triggers a reaction in more

than one module in the system. Such a mechanism is robust to ensure system output in

response to input stimulus in case of intermediate module failure, amplifies the effects of

the input stimuli, and also increases the response time of the system, e.g., in the use of a

transcriptional factor to trigger the bacterial heat shock response [44].

1.1.6 Themes

Emergence is ’bottom-up’ while design is ’top-down’. In other words, robustness in biochem-

ical systems by emergence or design underscores two contrasting approaches to research on

this topic, in particular to model biochemical systems based on modularity and robustness

[27, 150]. The bottom-up approach is appealing because model interactions, namely enzy-

matic reactions, can be specified from traditional biological knowledge. However, in this

approach it is also necessary to identify a large number of kinetic parameters. In most

cases, it is possible to estimate but not measure these parameters because of data issues.

Even so, parameter estimation is not without its challenges. The top-down approach re-

quires only that a performance objective for the system be specified, namely robustness,

so that accuracy of kinetic parameters is not as critical. However, at the present time,
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the concept of biochemical robustness by design is difficult to reconcile with mainstream

support for emergence. So, an interim solution to spur progress on this topic may be to

combine top-down and bottom-up approaches so that problems of parameter estimation

may be alleviated without the loss of biological knowledge [159].

At the same time, models of biochemical robustness by design may also play a role

to elucidate molecular mechanisms in robust biochemical systems. The logical premise of

this application is that because robustness is observed in a system, then an appropriate

representation (model) of that system is also robust [115, 150]. For example, feedback

control may be simulated by comparing the response of a robust system under perturbation

to a baseline (wild type) response [125]. Then, the resulting feedback may be analyzed to

yield insight into the contribution of, or interplay between, component molecules to ensure

robustness in the biochemical system. Such an application is an example that illustrates how

top-down approaches may be combined with bottom-up approaches to model robustness in

biochemical systems.

A persistent theme in research on biochemical robustness is the development of more

rigorous definitions of robustness in the context of biochemical systems, e.g., in terms of

graphical representations of structure in biochemical systems [55], model reduction [128],

and mathematical formulation towards a formal theory [81]. Although robustness is a ubiq-

uitous property, current studies on this topic tend to be reported in different, often quali-

tative, terms [89, 95]. As a result, it is not easy to compare study findings to uncover deep,

structural commonalities between robustness in different systems. Thus, the development

of a standard, possibly analytical, expression for biological robustness is a key challenge,

which will surely contribute to the discovery of fundamental principles for robustness.

Finally, robustness is a common, arguably definitive, property of biochemical systems

that is manifest and achieved via different mechanisms. In practice it is generally the result

of a combination of these mechanisms. For example, in the context of cell signaling, such

combinations ensure robustness where some mechanisms may favor initial signal activation,

e.g., modularity and redundancy, while others may favor continued signal transmission,

e.g., hierarchy. Hence, research on these various mechanisms can be rallied to a common
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objective, i.e., to elucidate the origin(s), execution [132], and rationale [30, 44] of robustness

in biochemical systems. However, in both theory and practice, the process to integrate

different mechanisms in a biochemical system to achieve robustness is not yet clear and

also raises other intriguing questions, e.g., on the controllability of biochemical networks

[23, 87, 92, 96]. Thus, the question of how different mechanisms are, or can be, integrated

to ensure robustness in biochemical systems will surely be a focus for continuing research.
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1.2 Metabolic system dynamics and control

1.2.1 Reaction kinetics

The dynamics of metabolic systems (or pathways) is primarily defined in terms of biochem-

ical, or enzymatic, reaction kinetics. For example, generalized mass action (GMA) and

flux balance analysis (FBA) are common approaches to quantify enzymatic reaction kinet-

ics based on the underlying principle of conservation of mass. In engineering terms, these

methods provide the equations of motion to describe metabolic system dynamics in terms

of enzymatic reactions. They are written in the time domain, and take the form of ordinary

differential equations (ODEs):

~̇x = f(~x(t), t) (1)

where ~x represents the variables of interest generally in terms of metabolite amount

(concentration) or flux, and f is a function of metabolite amounts over time t, which

describes the rate of change of these quantities based on an understanding of the enzymatic

reactions between said pathway metabolites.

1.2.1.1 Generalized mass action

In generalized mass action (GMA), the metabolic system dynamics is described in terms of

metabolite amount (concentration). The rate of change of metabolites is quantified based

on the law of mass action to describe and predict enzymatic reactions in solution. Precisely,

the law of mass action states that the rate of an elementary reaction, i.e., a reaction that

proceeds in one step, is proportional to the product of the amounts (or concentrations) of

participating molecules [58, 99]. More complex reactions that occur in multiple steps may

be written as a series of elementary reactions.

Thus, consider the (elementary) reaction:

A + B→ C (2)

where substrates A, B react (irreversibly) to form product C, and define k as the (pos-

itive, forward) reaction rate constant. Then, the rate of change of these molecules are
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written as:

dA

dt
=
dB

dt
= −dC

dt
= −kAB (3)

Although the law of mass action was developed to describe molecules in solution, it

may also be generalized to describe interactions between large numbers of individuals, e.g.,

wildlife populations in ecosystems. In theory, GMA is a simple and intuitive model that

approximates aggregate interactions between individuals in large populations. In other

words, the (kinetic) probability of interaction is proportional to the number of individuals.

However, in practice, the proportionality constant is not easily obtained. In this case,

this means that it is experimentally difficult to measure, or even estimate, the required

enzymatic reaction rate constants.

1.2.1.2 Flux balance analysis

In flux balance analysis (FBA), metabolic system dynamics is described in terms of steady-

state flux between metabolites under the assumption that particular objectives, e.g., home-

ostasis, are optimized [74, 119, 129, 162]. This approach combines metabolite amount (con-

centration), rate of reaction, and stoichiometry to represent metabolic flux. Thus, FBA is a

constraint-based approach that seeks to describe the rates at which metabolites (variables)

are exchanged between various states (compartments), i.e., flux, in a given system.

Thus, consider the reaction:

A + B↔ C (4)

where substrates A, B react (reversibly) to form product C, and define vforward, vreverse

as the forward and reverse fluxes. Then, under the steady-state assumption, the rate of

change of the balanced fluxes are written as:

d~x

dt
= S · ~v = ~0 (5)

where
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~x =


A

B

C

 , S =


−1 1

−1 1

1 −1

 , ~v =

 vforward

vreverse


~x is a vector of molecular amounts (or concentrations), and S is the (balanced) stoichio-

metric matrix of the system that describes ~v, a vector of (forward and reverse) fluxes that

are unknown quantities of interest. Furthermore, fluxes may also be specified as internal,

as shown in this example, or external to a system. FBA has been reported in models of

biochemical processes in a variety of organisms that includes E. coli [42], yeast, and plants

[57]. In theory, even for dense networks, fluxes in systems at equilibrium may be balanced

to give linear equations. However, in practice, it is difficult to verify that flux is a constant

quantity in metabolic systems.

1.2.2 Pathway regulation

In existing approaches to model metabolic systems, control is not usually differentiated from

dynamics. Existing approaches describe only metabolic system dynamics, i.e., motion, in

terms of parameters that must be specified, either by measurement or estimation. Examples

of parameters in such approaches include enzymatic reaction rate constants (mass action)

[58, 99], stoichiometric coefficients and flux rates (flux balance) [162], control coefficients

and elasticities (metabolic control analysis) [46, 65, 73], and kinetic orders (biochemical

systems theory) [134, 135]. Because metabolic system dynamics are described only in terms

of such parameters, the problem of modeling metabolic systems can be rephrased into a

question of parameter estimation, or system identification in engineering terms.

Importantly, using such approaches, it is implied that certain properties of metabolic

system dynamics, in particular robustness, can be fully explained with the associated param-

eters. However, to do so using -omic data, the number of parameters in recently published

models of metabolic systems tends to be significantly larger than the number of variables.

This leads to the problem of data over-fitting. Furthermore, despite the numbers, these pa-

rameters contain proportionately little information about the metabolic system dynamics,

e.g., in terms of parameter sensitivity [8, 59].
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1.2.2.1 Differentiating control from dynamics

Especially in complex systems, control, i.e., how system dynamics is regulated, is essential to

achieve system stability. Furthermore, it is necessary in reverse engineering stable metabolic

systems that components of control be differentiated from components of dynamics and

motion.

To illustrate the point, consider self-righting objects for instance (Figure 1). Precisely,

the object geometry, a round bottom, is the basis for dynamics and motion, i.e., rotation

about a point of stable equilibrium that represents the point of minimum gravitational

potential energy. To ensure self-righting behavior, such objects usually contain ballast so

that the center of mass is lower than its geometry suggests (assuming uniform density).

This ensures that any tilting about the fixed point raises the center of mass and is followed

by a subsequent return to equilibrium.

Thus, for a self-righting object, the ballast provides the necessary control mechanism

to regulate the object dynamics and motion due to its geometry. If not for the recent

construction of a self-righting object of uniform density, it may be easy to overlook the role

of ballast as a control mechanism in such self-righting objects [39, 161]. 1

1.2.2.2 Control theory in biology

Cybernetics is the study of structural complexity in animal and machine that enables com-

munication and control [169], and is closely related to control theory. In biology, this ap-

proach was first applied to study organ systems in physiology, e.g., in circulation [60, 121],

immunology [85, 155], the central [23, 28] and peripheral [49, 75] nervous systems, and even

bone remodeling [51]. Recently, this approach has been applied to study metabolic systems

that include biochemical pathways in E. coli, human hepatocytes and erythrocytes [20],

as well as in adult rat cardiomyocytes and human skeletal muscle [61]. Nonetheless, while

cybernetics emerged as the science of effective organization within systems, control theory

was developed to influence and guide the dynamics of complex systems.

In general, control theory deals with the design of particular controllers to influence and

1In addition, see [40, 160] for how such geometry is found naturally in the shell of the Indian Star Tortoise.

16



Figure 1: Stability of motion in self-righting objects: (top) ballast regulates mo-
tion in objects of non-uniform density; (bottom) geometry is solely responsible for self-
righting in an object of uniform density, the Gömböc. (Gömböc image taken from
http://www.thestar.com/article/269792)
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guide the dynamics of complex systems. In biology, some examples include the design of

optimal control strategies to manage wildlife populations [133, 170], or to maintain desirable

pest populations in agricultural systems [24, 25, 26]. Recently, control theory has also been

applied at the level of metabolic systems, e.g., to regulate the amount of cells in a bioreactor

using robust sliding mode control [48], or to regulate cell function in Escherichia coli (E.

coli) by constructing a bi-stable protein switch based on the switching properties of lambda

phage [64]. In such applications for controller design, the key constraint is the difficulty

involved in implementing the requisite actuators to effect control. In other words, the

control of metabolic systems is limited by the extent to which biochemical mechanisms in

these complex systems can be manipulated.
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1.3 Reverse engineering homeostasis

Homeostatic pathways resemble engineering systems in that both types of systems are robust

to disturbance within limit, i.e., system stability is maintained under small perturbations.

Based on such observations, recent opinion express cautious optimism to reverse engineer

the complexity and regulation of metabolic pathways by applying control theory in the

context of systems biology [33, 156]. In particular for metabolic systems, the robustness

of some cellular functions may be described in terms of control theory [91, 151]. For even

more practical applications, it is envisioned that a theory of biological robustness may be

developed to help understand the robustness of metabolic drug responses so as to improve

drug therapy [80, 81]. Thus, and for various other reasons, reverse engineering robustness

of metabolic systems, as a result of homeostasis, has attracted interest in the community

not only to understand how homeostatic pathways may have come to be, but also with the

potential of influencing and guiding the dynamics of deviated pathways.

1.3.1 Homeostasis as control

Homeostasis is the process of control, i.e., the regulation of pathway dynamics, to maintain

a stable condition in metabolic systems. While homeostasis is highly complex, homeostatic

mechanisms can be, and have been, simplified in terms of control theory. To illustrate the

point, two examples of homeostasis in synaptic signaling and glycolysis are discussed in

terms of open- and closed-loop control.

1.3.1.1 Open-loop control in synaptic signaling

Action potentials are propagated by the regulated flow of ions – calcium (Ca2+), sodium

(Na+) and potassium (K+) – into and out of cells via voltage- and receptor-gated channels

on the cell membrane (Figure 2). Across gaps between cells, or synapses, propagation of

action potentials is mediated by neurotransmitter molecules, e.g., acetylcholine, dopamine,

norepinephrine, and glutamate [67, 122, 147].

Starting at rest, the post-synaptic membrane assumes a resting potential. An action

potential arrives at the pre-synaptic membrane and depolarizes the membrane to open
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voltage-gated Ca2+ channels. Ca2+ influx into the cell triggers exocytosis of small synaptic

vesicles that contain neurotransmitters. These molecules couple with ion channels, e.g., Na+

channels, and other receptors that activate secondary messengers in the post-synaptic mem-

brane. Ligand-receptor binding at the post-synaptic membrane depolarizes the membrane

to generate an action potential. As the action potential at the post-synaptic membrane

travels away from the synapse, its resting potential is restored.

To regulate synaptic signaling, neurotransmitter receptors are also present on the pre-

synaptic membrane that may either inhibit or enhance exocytosis of synaptic vesicles. At

the same time, released neurotransmitters may be (a) (re-)taken up by transport proteins

on the pre-synaptic terminal membrane, e.g., dopamine, norepinephrine, and glutamate;

(b) degraded, e.g., acetylcholine, or (c) taken up by neighboring glial cells, e.g., glutamate.

Synaptic vesicles are recycled at the post-synaptic membrane by endocytosis.

Membrane potentials at the pre- and post-synaptic cells can be measured in terms of

voltage. In this system, pre-synaptic membrane potential is the input and post-synaptic

membrane potential is the output. The post-synaptic membrane potential depends on

neurotransmitters, released at the pre-synaptic membrane, which diffuse across the synapse

to bind to receptors on the post-synaptic membrane. The post-synaptic membrane potential

does not affect the pre-synaptic membrane potential. Thus, synaptic signaling is regulated

based on open-loop control, where the output does not inform the input.

1.3.1.2 Closed-loop control in glycolysis

Glycolysis is the primary pathway that breaks down glucose to synthesize adenosine triphos-

phate (ATP), the energy currency of the cell. The enzyme phosphofructokinase (PFK) is

a key regulator of this pathway (Figure 3). In particular, PFK catalyzes the first commit-

ted step in glycolysis, i.e., the irreversible conversion of fructose-6-phosphate (F6P) into

fructose-1,6,-bisphosphate (FBP) [21, 120].

At high levels of ATP, i.e., high energy levels in the cell, ATP allosterically inhibits the

enzyme PFK by lowering the binding affinity of PFK for its substrate F6P at the catalytic

site. Where energy (in the form of ATP) is spent, i.e., at low energy levels in the cell, ATP is
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converted to adenosine monophosphate (AMP). AMP reverses the inhibition of ATP on the

enzyme PFK. In other words, AMP enhances the activity of the enzyme PFK to increase

glycolysis, so as to increase the production of ATP.

Amounts of intracellular F6P and ATP/AMP can be measured. In this system, F6P

is the input and ATP/AMP are the output. The production of ATP/AMP depends on

glycolysis, where PFK catalyzes the first committed step of the pathway. Critically, PFK

activity is moderated by ATP/AMP. Thus, glycolysis is regulated based on closed-loop

control, where the output informs the input.

1.3.1.3 A theory of stability

To aid the study of robustness in metabolic systems, a theory of stability is undoubtedly

helpful to further reduce the complexity of homeostasis in terms of underlying principles. In

particular, the Lyapunov theory of stability [90, 102] is especially useful because it provides:

(a) an analytical definition of stability, and (b) a method of controller design that ensures

system stability and consequent robustness. In this dissertation, this method of controller

design, also known as the direct method of Lyapunov, is used to develop and apply a

comparator model to infer potential feedback in a highly regulated metabolic pathway.

For the time-invariant case, the Lyapunov theory of stability is as follows:

Lyapunov stability theorem. Let ~x = ~0 be an equlibrium point for ~̇x(t) = f(~x(t)),

where ~x(0) = ~0, x ∈ <n, f Lipschitz continuous in D ⊂ <n, and D contains the origin.

Suppose that V (~x(t)) ∈ C1 positive definite in D such that V̇ (~x(t)) ≤ 0, ∀~x(t) ∈ D, then

the equilibrium point is stable. If V̇ (~x(t)) < 0, ∀~x(t) ∈ D\~0, then the equilibrium point is

asymptotically stable.

A major outcome of the Lyapunov theory of stability is the provision of sufficient condi-

tions to determine the stability of the origin, e.g., (0, 0) in 2-dimensional space, of complex

systems. By specifying a candidate function, i.e., the candidate stability function (or Lya-

punov function), that satisfies these conditions, a controller may be designed that ensures

system stability without the need to solve accompanying differential equations that describe

the system dynamics. This is known as the Lyapunov direct method, or the second method
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Figure 2: Synaptic transmission: an example of homeostasis in biochemical processes using
open-loop control - [1] Ca2+ enters to trigger [2] exocytosis and release neurotransmitters
(NT) that [3] bind to ion channels, e.g., Na+, and other receptors in the post-synaptic
terminal, [4] synaptic vesicles are recycled by endocytosis; released neurotransmitters may
be [a] (re-)taken up by transport proteins, [b] degraded, [c] taken up by neighboring glial
cells. (Image modified from source: Holz and Fisher [67] c©1999 American Society for
Neurochemistry, National Center for Biotechnology Information (NCBI) Bookshelf)
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Figure 3: Structure of phosphofructokinase (PFK): this allosteric enzyme is a tetramer of
four identical subunits and is the key regulator of glycolysis. PFK catalyzes the conversion
of fructose-6-phosphate (F6P) to fructose-1,6,-bisphosphate (FBP). Adenosine triphosphate
(ATP) inhibits, while adenosine monophosphate (AMP) enhances, PFK enzymatic activity
by binding at the allosteric sites. (Image source: Berg et al [21] c©2002 W. H. Freeman and
Company, National Center for Biotechnology Information (NCBI) Bookshelf)
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of Lyapunov. For specific cases, the definition of candidate Lyapunov functions is left to

the user.

The Lyapunov direct method is commonly used to design stabilizing controllers in dy-

namic systems. To do this, the control objective can be posed as a problem of stability of

motion, where the origin represents desired (stable) steady-state dynamics. Then, a con-

troller or steering vector ~u(t) may be specified with respect to the plant, so as to guide

the system dynamics towards the origin. The key is to determine the dynamics of the con-

troller based on the choice of an appropriate candidate Lyapunov function. In these cases,

where controllers need not be unique, the choice of one controller over another may also be

informed by other practical considerations, e.g., the cost of implementation.

In terms of regulation in metabolic systems, homeostasis may be interpreted as a steer-

ing vector in a complex system. At the same time, because the Lyapunov theory of stability

provides only sufficient but not necessary conditions, the uniqueness of potential mecha-

nisms that may be responsible for homeostasis in metabolic pathways requires additional

experimental evidence to verify. When pathway redundancy in metabolic systems is also

considered, it is likely that multiple modes of control, i.e., different enzymatic reactions,

may exist to serve the same purpose.

1.3.2 Classical and modern control approaches

Classical control approaches deal mainly with single-input/single-output (SISO) systems in

the frequency domain. The transfer function, i.e., function of the (scalar) system output in

terms of the input, is computed from observations of frequency responses. Then based on

the transfer function, system stability and performance is analyzed in terms of the roots

of the characteristic equation, or ’poles’ and ’zeros’, using graphical methods. Feedback as

a result of classical control is specified in terms of the system output, i.e., closing the loop

based on open-loop behavior. Common modes of feedback in classical control are described

in terms of proportional, integral, and derivative (PID) control.

In general, current models of homeostasis in metabolic systems are developed in terms

of classical control and deal only with relatively simple cell behaviors that are well-studied
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in the literature. This is because the key issue in applying control theory to model home-

ostasis in metabolic systems is the difficulty in observing pathway dynamics with sufficient

temporal resolution, i.e., to measure metabolite amounts quickly enough. Classical control

approaches, developed to work with SISO systems, involve less variables and parameters

that require less data for abstraction.

In addition, because homeostatic mechanisms that may be responsible for control in

metabolic systems are difficult to verify experimentally, current studies on homeostasis

in metabolic systems are also focused on cases where extensive knowledge of the relevant

biology is available a priori. Furthermore, in many cases, public literature is the only feasible

resource to support any reasonable speculation on potential homeostatic mechanisms.

For example, bacterial chemotaxis in Escherichia coli is an instance of relatively simple

homeostatic behavior that may be described in terms of classical control. Exact adaptation

in bacterial chemotaxis is observed to be robust and not affected by changes in protein

levels [7, 16]. Furthermore, such behavior may be described as the result of integral control

that ensures convergence to steady state without error [177]. Using a classical control

approach, details of the relevant transfer function can also be illustrated using dynamic

input/output measurements, which provides insight into possible mechanisms that enable

the robust behavior [141].

A second example deals with the regulation of heat shock response, also in Escherichia

coli, which may be simplified as a feedback model for analysis using a number of potential

feedback designs to study the costs and benefits of mounting the response with specific

homeostatic mechanisms [44]. These examples illustrate classical control approaches to

model relatively simple homeostatic behavior that involves analyzing single loops in a closed

system.

Other examples of classical control models of homeostasis involve analyzing multiple

loops in closed systems, e.g., tryptophan regulation and energy metabolism. The trypto-

phan system in Escherichia coli may be considered as three processes in series, i.e., tran-

scription, translation, and synthesis, that involve multiple feedback loops [22, 163]. Energy

metabolism in terms of glucose and ATP is also complex behavior that may be described in
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terms of closed-loop regulation by various subsystems [32]. Moving on from single-variable

analysis, a recent study of the adaptive response in membrane channels is based on using

two variables, instead of one, to describe the dynamics of a 3-state model of membrane

channel kinetics [50].

Thus, given single-variable data, classical control approaches are adequate to analyze

and model simplified SISO models of metabolic systems. However, for metabolic systems, it

is still difficult to interpret system dynamics and feedback in the frequency domain. Where

high-throughput -omic technology is available such that there is sufficient data to support

multi-input/multi-output (MIMO) models of metabolic systems, modern control approaches

may prove to be more suitable to reverse engineer homeostasis in metabolic systems.

Given multi-variable data, modern control approaches were developed to handle MIMO

systems, i.e., in terms of the dynamics of multiple internal states of a system (or state-space).

To do this, the state-space is represented in terms of the rate of change of said states in the

time-domain. Then, system stability may be analyzed in terms of stability theorems, usually

based on optimizing specific stability functions (as in the case of the Lyapunov theory of

stability). As a result of this approach, system feedback can be specified in terms of the

state-space, which may prove useful to identify key controllable states. Common modes

of feedback in modern control include adaptive, optimal, and robust control. A detailed

comparison between classical and modern control approaches is shown in Table 1.

Thus, depending on the research objective, a modern control approach may prove to be

more suitable than a classical control approach to reverse engineer homeostasis in metabolic

systems using high-throughput -omic data, particularly in terms of:

• handling many variables simultaneously - modern control approaches handle

vector systems using a state-space description but classical control approaches handle

scalar systems,

• representing time domain dynamics - time rate of change of pathway dynamics is

intuitive to biologists but transfer function ’poles’ and ’zeros’ in the frequency domain

do not correspond directly to biological variables,
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• interpreting system feedback - state-space feedback subject only to considerations

for system stability in modern control are open to interpretation but PID feedback

effectively constrains how pathway metabolites may interact in a homeostatic system.
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Table 1: Comparison of classical vs. modern control approaches

Classical control Modern control

Data Single variable High-throughput (omic)

Variables Input/output (scalar) Internal states (vector)

Systems Single-input/single-output Multi-input/multi-output

(SISO) (MIMO)

Representation Frequency domain Time domain

Transfer functions State-space models

Frequency signals, e.g., im-
pulse/step, are not intuitive
and usually difficult to imple-
ment/manipulate in biology

Dynamics based on first principles,
e.g., biochemical kinetics, are intu-
itive and appeal to current under-
standing

Stability Roots of the characteristic equa-
tion, i.e., ’poles’ and ’zeros’ of the
transfer function

Lyapunov stability theory, i.e.,
generalized concept of energy

Methods Graphical analysis in the complex
plane, e.g., root-locus

Numerical/computational analy-
sis, e.g., matrix algebra

Feedback Proportional, integral, derivative
(PID) control, in terms of system
output

Adaptive, robust, optimal control,
in terms of internal states of a sys-
tem
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1.4 Thesis statement

In this present age of -omic biotechnology, modern control approaches are useful to model

complex behaviors in biological systems, such as homeostasis in metabolic pathways, us-

ing high-throughput data. Although they can be useful in other ways, classical control

approaches undermine the vast volumes, and wealth, of -omic data that are increasingly

commonplace in biology. Thus, using -omic data, a modern control approach is suitable to

reverse engineer homeostasis in metabolic systems.

In the rest of this dissertation, from an engineering and a modern control perspective, I

describe the development and application of a comparator to reverse engineer homeostasis in

a highly regulated metabolic pathway using mass spectrometry lipidomic time-series data.

The metabolic pathway in question is the C16:0 sphingolipid de novo biosynthesis pathway,

studied in a human embryonic kidney (HEK) cell line, where the effect of single-gene over-

expression on homeostasis in sphingolipid de novo biosynthesis is of interest. Precisely, in

these single-gene overexpressed (or treated) cells, the gene that codes for serine palmitoyl-

transferase (SPT), an enzyme in the de novo biosynthesis pathway, is overexpressed. The

treated cells are assumed to approach the same steady-state dynamics as the wild type

over time. Consequently, the outcome of the comparator is to: (a) model the differences

between the treated and wild type cells, and (b) predict feedback in treated cells as a result

of homeostasis.

In Chapter 2, I review the relevant sphingolipid biology and biomedical significance

of sphingolipid de novo biosynthesis; and present experimental materials and methods as

well as the development and application of the comparator model in terms of concept,

assumptions, mathematical representation, and numerical implementation. In Chapter 3,

I report the results of the comparator model in terms of in silico simulation; verify and

interpret these results from a biological perspective; and demonstrate the generality of the

comparator model with respect to additional data (on C26:0 sphingolipids). In Chapter 4, I

discuss the biomedical applications and limitations of the proposed comparator model, and

suggest what will be needed in the experimental data for the proposed model to be applied

more fruitfully in the fields of biology and biomedical engineering.
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From a broader perspective, it is also the goal of this thesis research to contribute to

”the use of existing techniques in well-developed areas of control theory to analyze problems

of interest to biologists” [146]. I strive to achieve this objective by proposing and developing

the first use and application of a comparator model as a viable, albeit presently crude, tool

for analysis in traditional case/control studies in biology.
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CHAPTER II

MATERIALS AND METHODS: SPHINGOLIPID DE NOVO

BIOSYNTHESIS

Using a modern control approach, a comparator model is developed to simulate and predict

regulatory feedback in a case study metabolic pathway. Specifically, the comparator model

is applied to a case study in the effect of single-gene overexpression on sphingolipid de

novo biosynthesis in a human embryonic kidney (HEK) cell line. From the perspective

of interdisciplinary research in particular, the comparator model appeals to the nature of

conventional experiment design in the field of biology in terms of traditional case/control

studies.

2.1 Sphingolipid biology

Sphingolipids are involved in key eukaryotic cell functions such as membrane structure

recognition, signal transduction, intracellular regulation, and cell-cell interaction [109]. The

general structure of a sphingolipid comprises a sphingoid base backbone, e.g., sphinganine,

that is modified by addition of long-chain fatty acids, double bonds in the sphingoid base (to

make sphingosine), and polar headgroups (Figure 4). When variation in these components

is considered, sphingolipids are one of the most complex families of biomolecules [45, 123].

Long-chain fatty acids and their roles in sphingolipid biosynthesis, metabolism and

function are of specific interest, e.g., in ceramide biosynthesis [88], maintenance of fatty acid

levels [31], bilayer membrane composition in terms of lipid rafts [107, 52] and sterol affinity

[117], mitochondrial permeability [116], and apoptotic signaling [139]. The metabolism of

these sphingolipids is also studied in various cells, e.g., yeast [38], plants [12], mouse skin

[104], and human lung endothelium [106].

De novo biosynthesis of sphingolipids with varying fatty acid chain lengths, e.g., C16:0

31



and C26:0, occurs via similar pathways. In particular, they share a common pool of palmi-

tate and sphingoid bases. However, these chain-length variants affect cell functions dif-

ferently. This suggests that biosynthesis of such chain-length variants is also regulated

differently.

Alterations in sphingolipid biosynthesis, storage, and metabolism are implicated in

human diseases [72]. For example, in synthesis, infantile-onset symptomatic epilepsy is

described as a genetic defect in ganglioside GM3 synthase [144]; in storage, Tay-Sachs,

Sandhoff, and Gaucher disease are characterized by glycosphingolipid accumulation [86]; in

metabolism, ceramide functions as a tumor suppressor in various cancer cells [118]. Reg-

ulation of sphingolipid levels through de novo bio-synthesis is critical to maintain key cell

functions, failing which leads to a variety of human diseases. By studying the dynamics

and regulation of sphingolipid de novo biosynthesis, it may be possible to learn more about

onset and development of these sphingolipid diseases.
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2.1.1 Sphingolipid de novo biosynthesis

Sphingolipid de novo biosynthesis is a ”necessary, but dangerous, pathway” [109]. De novo

biosynthesis is necessary because sphingoid bases present in food are mostly degraded in

the intestine [164]. Regulation of sphingolipid amounts through de novo biosynthesis is

important because pathway intermediates such as ceramide and sphingomyelin are highly

bioactive.

Three of the initial enzymes in the sphingolipid de novo biosynthesis pathway (Figure

5) are thought to be particularly important:

• serine palmitoyltransferase (SPT), which catalyzes the initial step of sphingolipid

biosynthesis by condensation of L-serine and palmitoyl-coA (Pal-CoA),

• (dihydro)ceramide synthase, which adds the amide-linked fatty acid to form dihydro-

ceramide, and

• dihydroceramide desaturase, which adds the 4,5-trans-double bond of the sphingoid

base backbone to form ceramide.
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Figure 4: General molecular structure of sphingolipids with sphingoid base backbone,
variable-length fatty acid chains, and headgroups (R).
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2.1.1.1 Sphingolipid-omics

The increasing wealth of quantitative lipidomic data makes the study of sphingolipid bi-

ology from a systems perspective promising and challenging at the same time [112]. The

diversity and complexity of sphingolipids require researchers to possess a range of tools to

work with these compounds. For example, to study dynamic changes in lipid amounts,

computational methods that couple mass spectrometry with statistical algorithms to ana-

lyze the vast number of lipid species from cellular extracts are required [47]. In addition,

the Lipidomics Gateway (www.lipidmaps.org) is a comprehensive website from the LIPID

MAPS consortium, the leading group for lipidomics research, which contains standards,

data, and tools for researchers interested in lipid biology.

2.1.2 Mass spectrometry lipidomics

Sphingolipids, i.e., sphingoid bases and (dihydro)N-acyl species, are extracted from samples

of cultured human embryonic kidney (HEK) cells and quantified by liquid chromatography

electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) as described previ-

ously [110, 152]. For this case study, measurements from four technical replicates are taken

at seven time points in uniform hourly intervals, i.e., at 0, 1, 2, 3, 4, 5, and 6 hours. The

community standard is described by the LIPID MAPS consortium, which requires three

technical replicates taken at eight time points, i.e., at 0, 0.5, 1, 2, 4, 8, 12, and 24 hours.

The data acquisition protocol for this case study is comparable to the community stan-

dard for time-series studies in terms of both (a) number of time points sampled, and (b)

number of technical replicates. In addition, compared to the community standard, the data

for this case study is also sampled more frequently at the onset of the experiment.

To quantify sphingoid bases labeled with [U-13C]-palmitate, additional multiple reaction

monitoring (MRM) pairs corresponding to [M+16] precursor ions and [M+16] product ions

are used. To quantify (dihydro)N-acyl sphingolipids labeled with a single [U-13C]-palmitate,

MRM pairs corresponding to [M+16] precursor ions and both [M+0] and [M+16] product

ions are used, providing discrimination of labeling on the sphingoid base and N-acyl moi-

eties. These [M+16] isotopomers are designated BASE and FA respectively. To quantify
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(dihydro)N-acyl sphingolipids labeled with two [U-13C]-palmitate molecules, MRM pairs

corresponding to [M+32] precursor ions and [M+16] product ions are used; the [M+32]

isotopomers are designated DUAL. Unlabeled sphingolipids are designated 12C. The peak

areas of unlabeled and labeled sphingolipid isotopomers are integrated, converted to pico-

moles using the peak area of the internal standard, and normalized to the mg of protein in

the extracted sample.
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2.2 Comparator model

From engineering control, a comparator takes in 2 inputs: one each from the reference and

the plant systems (Figure 6). In general, the reference system exhibits, and establishes, the

desired response to an input. Under different scenarios, the input could be either known,

e.g., a tracking signal, or unknown, e.g., a disturbance to the system. For the purpose of

modeling, regardless of whether it is known or unknown, the input is common to both the

reference and plant systems. In other words, the reference system is also a model for the

plant system. Thus, the reference system is fully known while the plant system is unknown

(fully or partially) and is therefore the system of interest.

The two inputs to the comparator are the outputs from the reference and plant systems.

At each time, the difference between the two given inputs is calculated and used to compute

an output by the comparator, which is feedback to the plant system at the next time. This

process proceeds iteratively until the plant dynamics converges with the reference dynamics,

i.e., when the difference between the outputs from the reference and plant systems is zero

(Figure 4).

Thus, the key to convergence between the reference and plant systems lies in how the

comparator output is: (a) computed, and (b) implemented, i.e., as actuated feedback to

the plant system. As discussed before in Section 1.3.1, the Lyapunov theory of stability

provides a direct method to specify how to accomplish the former based on a user-defined

stability function.
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2.2.1 Assumptions

The key assumptions are as follows:

2.2.1.1 Treatment effect on system stability

In this case study, the wild type dynamics is chosen as the reference system, which the

treated cells, i.e., SPT overexpressed, follow to the same stable steady state. More precisely,

pathway dynamics in treated cells is assumed to converge to the wild type over time, i.e.,

the difference between the two pathways, in terms of measurable metabolite amounts, goes

to zero.

Thus, the underlying assumption here is that the effect of the treatment condition,

i.e., single-gene (SPT) overexpression, is assumed to be large enough such that pathway

dynamics in treated cells can be differentiated from the wild type; however, at the same

time, it is small enough such that the treated cells do not converge to a second steady state

that is different from the wild type. In other words, homeostasis remains relevant under

these experimental conditions. This assumption is supported in theory by the pathway

topology [171] and in practice from experimental data.

2.2.1.2 Determination of pathway differences

The comparator is a quantitative model of how deviations from the ”desired” (stable) state

(or response), represented by the wild type in this case, may be handled under homeostasis.

The issue is that at any time, while the ”desired” state may be observed in wild type

cells, only the perturbed state is observed in the treated cells. In other words, without

communicating with the wild type in real-time, it is implicitly assumed that the treated

cells have knowledge of the ”desired” state a priori.

Thus, the underlying assumption here is that a ”desired” state is already prescribed

within the cells, treated or wild type. Such a ”desired” state could possibly be genetically

predetermined so that if the cell encounters perturbation within certain homeostatic limits,

such deviations from the ”desired” state could be regulated to restore the system to stability.
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2.2.2 Relevance to case/control studies in biology

In this case study, a comparator model is developed and applied to model the effect of

single-gene (SPT) overexpression on sphingolipid de novo biosynthesis in human embryonic

kidney (HEK) cells in terms of pathway regulation under homeostasis. In particular, as a

result of homeostasis, treated cells are assumed to regulate sphingolipid de novo biosynthesis

such that levels of sphingolipid metabolites in these cells approach the wild type over time.

Stable isotope 13C-labeled palmitate is added to both treated and wild type cells in excess

relative to intracellular sphingolipid metabolites to facilitate tracking the levels of these

sphingolipid metabolites by mass spectrometry.

In other words, treated cells are represented as the plant system and the wild type as

the reference system. Sphingolipid precursor, extracellular palmitate is the input that is

common to both reference and plant systems. Then, by analyzing the dynamics of feed-

back gain from the comparator as a predictive model of homeostasis, interactions between

sphingolipid metabolites in the system may be responsible to regulate pathway dynamics

(Figure 7).

Thus, the comparator model appeals to, and indeed complements, traditional experi-

ment design in the field of biology in that it provides a ready research paradigm for the

analysis of homeostatic mechanisms using conventional case/control experiments, which

correspond intuitively to the engineering language of plant/reference systems. Effectively,

the proposed comparator model demonstrates that complexities of homeostasis can be re-

duced by borrowing well-established concepts from control theory to describe equally well-

documented phenomena in biology. Consequently, so long as the experimental treatment

does not result in responses that are beyond the reference system, the comparator model

together with an appropriate theory of stability may be an additional analysis tool that is

useful to reverse engineer homeostasis and contribute to research in biochemical robustness.
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2.3 Mathematical representation

2.3.1 State-space model

There are 10 sphingolipid metabolites of interest in the de novo biosynthesis pathway based

on the available data. They are:

1. sphinganine (Sa)

2. sphinganine phosphate (SaP)

3. dihydroceramide (DHCer)

4. dihydroglucosylceramide (DHGC)

5. dihydrosphingomyelin (DHSM)

6. ceramide (Cer)

7. glucosylceramide (GC)

8. sphingomyelin (SM)

9. sphingosine (So)

10. sphingosine phosphate (SoP)

As discussed in Section 2.1.2, extracellular palmitate, a precursor molecule that is la-

beled using stable isotope 13C, is added to facilitate the measurement of these sphingolipid

metabolites using mass spectrometry.

Thus, these sphingolipid metabolites in the de novo biosynthesis pathway represent the

internal states of the pathway system while the sphingolipid precursor molecule, palmitate,

is the input that is common to both wild type and treated cells. Then, the state-space ~x(t)

can be defined as the set of intracellular sphingolipid metabolite amounts where
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~x(t) = [Sa(t), SaP (t),

DHCer(t), DHGC(t), DHSM(t),

Cer(t), GC(t), SM(t),

So(t), SoP (t)]T (6)

The dynamics of this system can be described in a simplified form using generalized

mass action (GMA) [58, 99] and written as a system of linear ordinary differential equations

(ODEs) as follows:

Ṡa(t) = kin,SaPalCoA+ kSaP,SaSaP + kDHCer,SaDHCer

− (kSa,SaP + kSa,DHCer)Sa (7)

˙SaP (t) = kSa,SaPSa− kSaP,SaSaP (8)

˙DHCer(t) = kSa,DHCerSa+ kDHGC,DHCerDHGC

+ kDHSM,DHCerDHSM + kCer,DHCerCer

− (kDHCer,Sa + kDHCer,DHGC + kDHCer,DHSM + kDHCer,Cer)DHCer (9)

˙DHGC(t) = kDHCer,DHGCDHCer − kDHGC,DHCerDHGC (10)

˙DHSM(t) = kDHCer,DHSMDHCer − kDHSM,DHCerDHSM (11)

˙Cer(t) = kDHCer,CerDHCer + kGC,CerGC + kSM,CerSM + kSo,CerSo

− (kCer,DHCer + kCer,GC + kCer,SM + kCer,So)Cer (12)

ĠC(t) = kCer,GCCer − kGC,CerGC (13)

˙SM(t) = kCer,SMCer − kSM,CerSM (14)

Ṡo(t) = kCer,SoCer + kSoP,SoSoP − (kSo,Cer + kSo,SoP )So (15)

˙SoP (t) = kSo,SoPSo− (kSoP,So + kSoP,out)SoP (16)

where ka,b indicates the reaction rate constant for the enzymatic reaction going from a

to b. In addition, because extracellular palmitate is added in excess relative to intracellular
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amounts of sphingolipid metabolites, the amount of PalCoA as the system input is assumed

to be constant and in excess for the length of the experiment in vitro and corresponding sim-

ulation in silico. On a related note, the Michaelis-Menten model of enzyme reaction kinetics

[165] is not applied here because of the difficulties in estimating the requisite parameters

[11, 34].

2.3.2 Comparator model

The comparator model is derived from the Lyapunov theory of stability based on scalar-

input to a multi-variable system. As follows in this section, variables and parameters that

deal with the reference system are denoted by subscript ref .

2.3.2.1 Plant and reference systems

The state-space model for the reference system, i.e., wild type cells with (assumed) fully

known processes, is:

~̇xref (t) = Aref~xref (t) +~brefr(t) (17)

for the internal states (sphingolipid metabolites) ~xref (t) of the reference system (wild

type cells), where dynamics between these states (enzymatic reactions between sphingolipid

metabolites) can be described in terms of linear ordinary differential equations (ODEs) with

parameters (reaction rate constants ka,b) contained in the matrix Aref .

The scalar system input (sphingolipid precursor palmitate, which is converted to intra-

cellular palmitoyl-coA PalCoA) r(t) can be scaled and targeted at various internal states

by the actuation vector ~bref ; in this case, it is involved only in the first enzymatic reaction

of the pathway.

The state-space model for the plant system, i.e., treated cells with fully or partially

unknown processes that are of interest, is:

~̇x(t) = A~x(t) +~bu(t) (18)

for the internal states (sphingolipid metabolites) ~x(t) of the plant system (treated cells),
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where dynamics between these states (enzymatic reactions between sphingolipid metabo-

lites) are described in terms of linear ODEs with parameters (reaction rate constants ka,b)

contained in the matrix A.

The scalar feedback (from PalCoA and other system sphingolipid metabolites) u(t) reg-

ulates the dynamics of these various states in the plant through the actuation vector ~b.

More precisely, the feedback u(t) is the sum of two components such that:

u(t) = ux(t) + ur(t) = ~hx(t)T~x(t) + hr(t)r(t) (19)

where ux(t), ur(t) are specific to the internal states and system input respectively and

are modulated by feedback gain ~hx(t), hr(t).

2.3.2.2 Derivation from Lyapunov stability

Let ~e(t) be the difference between plant and reference systems:

~e(t) ≡ ~x(t)− ~xref (t) (20)

such that

~e(t) = ~x(t)− ~xref (t)

⇒

~̇e(t) = ~̇x(t)− ~̇xref (t)

= [A~x(t) +~bu(t)]− [Aref~xref (t) +~brefr(t)]

= [A~x(t) +~b(~hx(t)T~x(t) + hr(t)r(t))]− [Aref~xref (t) +~brefr(t)]

= [A +~b~hx(t)T ]~x(t)−Aref~xref (t) + [~bhr(t)−~bref ]r(t)

= [A +~b~h∗Tx −~b~h∗Tx +~b~hx(t)T ]~x(t)−Aref~xref (t) + [~bhr(t)−~bh∗r +~bh∗r −~bref ]r(t)

= Aref [~x(t)− ~xm(t)] +~b[~hx(t)T − ~h∗Tx ]~x(t) +~b[hr(t)− h∗r ]r(t)

= Aref~e(t) +~b[∆~hx(t)T~x(t) + ∆hr(t)r(t)] (21)

where
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A +~b~h∗Tx = Am

~bh∗r = ~bm

∆~hx(t) = ~hx(t)− ~h∗x ⇒ ∆~̇hx(t) = ~̇hx(t)

∆hr(t) = hr(t)− h∗r ⇒ ∆ḣr(t) = ḣr(t)

and ~h∗x, h∗r are the ideal steady-state feedback gains.

Then choose a candidate stability function, i.e., positive definite V (·):

V (~e(t),∆~hx(t),∆hr(t)) = ~e(t)TP~e(t) + ∆~hx(t)TΓ−1
x ∆~hx(t)− γ−1

r ∆hr(t)
2 (22)

and take its derivative with respect to time as follows:

V̇ (t) = ~e(t)T [AT
mP + PAm]~e(t) + 2~e(t)P~b[∆~hx(t)T~x(t) + ∆hr(t)r(t)]

+ 2∆~hx(t)TΓ−1
x ∆~̇hx(t)

+ 2∆hr(t)γ
−1
r ∆ḣr(t)

= ~e(t)TQ~e(t)

+ 2∆~hx(t)T [~x(t)~e(t)TP~b+ Γ−1
x ∆~̇hx(t)]

+ 2∆hr(t)[r(t)~e(t)
TP~b+ γ−1

r ∆ḣr(t)] (23)

Thus, to ensure V̇ (t) is negative semi-definite that guarantees asymptotic stability, i.e.,

V̇ (t) = −~e(t)TQ~e(t) ≤ 0 (24)

~̇hx(t) and ḣr(t), which are the rates of change of feedback gain, must be:

~̇hx(t) = −Γx~x(t)~e(t)TP~b (25)

ḣr(t) = −γrr(t)~e(t)TP~b (26)

where Γx, γx are also user-defined. Then, P is positive definite symmetric and satisfies

the Lyapunov equation:
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AT
mP + PAm + Q = ~0 (27)

where Q is also positive definite symmetric. P can be solved by specifying Q in addition

to Aref from equation (1). Finally, the initial conditions ~hx(0), hr(0) may be chosen by

matching:

A +~b~hx(0)T = Aref (28)

~bhr(0) = ~bref (29)

to approximate the ideal steady-state feedback gains ~h∗x, h∗r .
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2.4 Implementation

2.4.1 Parameter estimation

2.4.1.1 State-space parameters

Reaction rate constants ka,b in the state-space model were estimated using a genetic algo-

rithm to optimize a modified least-squares error between in silico pathway dynamics and

corresponding experimental data [140]. Only C16:0 DUAL species data from both treated

and wild type cell data were used. While additional information may be inferred from each

of the labeled/unlabeled combinations of BASE, FA, or 12C species, they are not used here

for simplification.

Inputs to the estimation routine include measured amounts of all sphingolipid metabo-

lites determined from 4 technical replicates. Only 5 of 7 data points, from 0 to 4 hours,

were used as training data for parameter estimation; the last 2 data points were used to

verify estimation results. Furthermore, robustness of in silico model results, i.e., dynamics

of feedback gain, is also tested by sensitivity analysis of the model results to perturbations

in these reaction rate constants, where kperturbed = koriginal ∗ 10−1, 101.

2.4.1.2 Comparator parameters

The system input is extracellular palmitate that is in excess amounts relative to the pathway

sphingolipid metabolites. Extracellular palmitate is converted to intracellular palmitoyl-

coA (PalCoA). Subsequently, r(t) represents the rate at which PalCoA is converted to

sphinganine (Sa), i.e., kin,SaPalCoA, the first enzymatic reaction of the sphingolipid de

novo biosynthesis pathway. Thus, r(t)t is a boundary condition that is a scalar constant,

numerical value 100.

The reference system actuation vector ~bref supplies only the common system input r(t).

The plant system actuation vector ~b supplies the control input in terms of two components:

state feedback ux(t), and system input ur(t). Numerical values for ~b are specified through

iteration, subject to non-negative model results, so as to minimize the least-squares error

between in silico model results and in vitro experimental data.

Γx, γr, and Q are parameters of the candidate stability function, subject to conditions of

49



the Lyapunov theory of stability. These parameters affect the rate at which the plant system

approaches (stable) steady state, and in practice, i.e., for controller design, may be tuned

to achieve specific performance objectives. Here, as a first attempt to model homeostasis

in a highly regulated metabolic pathway, these parameters are selected non-specifically.

Γx and γr correspond to the internal states of the pathway system x(t) and the system

input r(t) respectively. Starting from an initial value of the identity matrix I for Γx and

unity for γr, these parameters are tuned iteratively, by one order of magnitude to 0.1, to

alleviate the stiffness problem for numerical integration [126].

Q is specified as the identity matrix I. Then, based on the Lyapunov equation, AT
refP+

PAref + Q = ~0, P can be solved in MATLAB using the built-in function lyap() once Q

and Aref are also specified.

hr(0) and ~hx(0) represent initial conditions for feedback gains that correspond to the

system input r(t) and state-space x(t). The numerical values are specified as 1 for hr(0) and

~0 for ~hx(0). Based on the candidate stability function subject to the Lyapunov theory of

stability, the rate of change of these feedback gains is a function of the state-space difference

~e(t) between the reference and plant systems. In theory, initial conditions for the feedback

gains affect only the rate of convergence; however in practice, if these initial conditions are

poorly chosen, then convergence may not be achieved at all.

2.4.2 Modeling error

The modeling error is measured in terms of the root-sum-square (RSS) quantity between

in silico model results and in vitro experimental data, which is defined as:

RSS =

√√√√ tf∑
t=t0

(xinsilico,t − xinvitro,t)2 (30)

where xinsilico,t represents in silico model results at time t and xinvitro,t represents in

vitro experimental data at time t, where t = 1, 2, 3, 4, 5, 6.
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2.4.3 Numerical details

The aforementioned mathematical representation is implemented in MATLAB using the

built-in function ode15s() as follows:

• A,Aref ,Γx,P,Q ∈ <10x10

• ~x(t), ~xref (t), ~e(t),~hx(t),~b,~bref ∈ <10

• u(t), r(t), hr(t), γr ∈ <

The proposed comparator model is first applied to data on the C16:0 sphingolipid de

novo biosynthesis pathway. Then, to verify the generality of the proposed model, it is

subsequently applied to data on the C26:0 sphingolipid pathway. While the two sphingolipid

pathways are similar in terms of de novo biosynthesis, they are independent systems because:

• different enzymes are responsible to catalyze enzymatic reactions in each pathway sys-

tem – a family of (dihydro)ceramide synthases (CerS1, CerS2, , CerS6) are responsible

for dihydroceramide (DHCer) synthesis from sphinganine (Sa); in particular, CerS3

and CerS4 produce DHCer with very long chain fatty acids that are greater than or

equal to 20 carbon atoms long,

• C16:0 and C26:0 sphingolipid metabolites are quantified using mass spectrometry

independently,

• parameters of the state-space models, i.e., reaction rate constants, are estimated in-

dependently.

In reality, the underlying biological picture is likely to be much more complex. For

instance, there may be cross-signaling events between the two pathways simply because

sphingolipid metabolites are localized in the same regions on cellular membranes. Nonethe-

less in this case study, because such cross-signaling events in de novo biosynthesis between

sphingolipid metabolites that are significantly different in fatty acid chain length is not yet

well documented, modeling such events is not yet an issue.
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2.4.3.1 C16:0 pathway

Parameters of the C16:0 pathway state-space model, i.e., reaction rate constants ka,b, are

available in Appendix A. All other parameters are defined as follows:

input: r(t) = 100(= kin,SaPalCoA)

actuation: ~bref = [1, 0, . . . , 0]T ,

~b = [10,−0.1,−10, 10, 10,−0.1,−0.1,−0.1,−0.1, 10]T

adaptation: Q = I, Γx = 0.1I, γr = 0.1

initial conditions: hr(0) = 1,

~hx(0) = [0, . . . , 0]T

2.4.3.2 C26:0 pathway

Parameters of the C26:0 pathway state-space model, i.e., reaction rate constants ka,b, are

available in Appendix B. All other parameters are defined as follows:

input: r(t) = 100(= kin,SaPalCoA)

actuation: ~bref = [1, 0, . . . , 0]T ,

~b = [10,−0.1,−10, 10, 10,−0.1,−0.1,−0.1,−0.1, 10]T

adaptation: Q = I, Γx = 0.1I, γr = 0.1

initial conditions: hr(0) = 1,

~hx(0) = [0, . . . , 0]T
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CHAPTER III

RESULTS: PATHWAY DYNAMICS AND FEEDBACK

In this chapter, results of the proposed comparator model to reverse engineer homeostasis

in a highly regulated metabolic pathway are reported as follows:

• to test (a) the efficacy of the proposed comparator model in capturing observed path-

way dynamics, and (b) the robustness of predicted steady-state pathway feedback in

response to simulated errors in state-space parameter estimation,

• to interpret and verify predicted steady-state pathway feedback in the context of

homeostasis in C16:0 sphingolipid de novo biosynthesis, by comparison to literature

as well as independent data on measured changes in sphingolipid metabolite levels in

response to 4HPR dosage in both treated and wild type cells, and

• to demonstrate the generality of the proposed modeling approach, by applying the

comparator model to a different metabolic system using independent data on C26:0

sphingolipid metabolites.

Here, to facilitate discussion of the model results, the 10 sphingolipid metabolites of

interest in the de novo biosynthesis pathway can be grouped as follows:

• Sa* - Sa and SaP,

• So* - So and SoP,

• DH* - DHCer, DHGC, and DHSM,

• Cer* - Cer, GC, and SM.

where Sa*, So* are sphingoid bases, DH* are dihydrosphingolipids, and Cer* are sphin-

golipids.
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3.1 Model efficacy and robustness

3.1.1 Pathway dynamics

In this subsection, the model results are reported in terms of: (a) state-space parameter fold

change between treated and wild type cells, (b) root-sum-square (RSS) error between in

silico model results and in vitro experimental data in wild type cells, i.e., reference system,

(b) RSS error between in silico model results and in vitro experimental data in treated cells,

i.e., plant system, without comparator, and (d) RSS error between in silico model results

and in vitro experimental data in treated cells with comparator.

3.1.1.1 State-space parameter fold change between treated and wild type cells

Each state-space parameter represents the reaction rate constant of a specific enzymatic re-

action in the pathway. Appendix A lists the estimated state-space parameters for the C16:0

sphingolipid biosynthesis pathway. As such, parameter fold change between comparable

systems is often used as a preliminary indicator of enzymatic reactions that may proceed

at noticeably different rates in one system than the other, i.e., in treated cells compared to

the wild type, which may be biologically interesting.

Fold change in reaction rate constants between treated and wild type cells is reported in

Table 2. Reaction rate constants with observed log10 fold change greater than magnitude

”1” may be considered to be ”biologically significant”. In addition, based on these values,

Figure 10 shows the log10 fold change of these reaction rate constants between treated and

wild type cells. Fold change is ”significant” in 9 of the 18 reaction rate constants in all.

The 9 reaction rate constants with potentially ”biologically significant” fold change

between treated and wild type cells are:

fold change < 10−2 kSa,DHCer, kGC,Cer,

10−2 < fold change < 10−1 kDHCer,Sa, kDHCer,DHGC , kDHCer,Cer, kCer,So, kSo,Cer, and

101 < fold change < 102 kSa,SaP , kDHGC,DHCer.
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Table 2: Parameter fold change: C16:0 reaction rate constants

kSaP,Sa -0.1811

kDHCer,Sa -1.2927

kSa,SaP 1.3986

kSa,DHCer -2.8536

kDHGC,DHCer 1.3260

kDHSM,DHCer -0.1277

kCer,DHCer 0.5080

kDHCer,DHGC -1.5468

kDHCer,DHSM 0.4930

kDHCer,Cer -1.1099

kGC,Cer -3.7469

kSM,Cer 0.1851

kSo,Cer -1.6749

kCer,GC 0.0072

kCer,SM -0.6839

kCer,So -1.2724

kSoP,So -0.1414

kSo,SoP 1.4213
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3.1.1.2 Wild type cells ( reference system)

In the following series of time-series graphs of model results, the scatterplots represent

median value and range of 4 technical replicates (where available) of in vitro experimental

data in discrete time (t = 0, 1, 2, ..., 6) and broken lines represent in silico model results in

terms of sphingolipid metabolite amounts.

Figure 8 shows the experimental data and model results for pathway dynamics in wild

type cells in terms of sphingolipid metabolite amounts using the generalized mass action

(GMA) state-space model. Experimental data was not available for Sa*.

For So*, the median data suggests that So increases quickly at first until time t = 2h and

approaches a steady state around t = 4h. At the same time, measurements for So are less

consistent compared to other molecules and have a much larger range. The median values

for SoP over time shows that SoP remains low throughout. This observation is supported

by its range of measurements, which is consistently small except for at time t = 6h.

For DH*, technical replicates were not available and the measurements fluctuate signifi-

cantly throughout the course of experiment. As such, it is not possible to estimate apparent

trends in how the amounts of these molecules change over time.

For Cer*, experimental data is highly consistent across all replicates as seen from the

small range of measurements. Thus, the data shows that Cer increases quickly at first till

t = 1h and approaches a steady state around t = 4h; GC increases very slightly throughout

t = 0h to t = 6h, and SM increases more quickly before t = 3h compared to after t = 4h.

Comparing the model results with experimental data qualitatively, the state-space model

of pathway dynamics based on GMA is a good fit to the experimental data for So*, Cer,

and GC (4 metabolite species), where they fall clearly and consistently within the range

of measurements for these metabolites. For SM, the model result reflects similar trends,

i.e., an increase over time but at a much larger rate in silico than is measured in vitro.

However for DH*, the model results are a poor fit to the experimental data, although even

to the trained eye, it may not be straightforward to discern an apparent trend in pathway

dynamics for these sphingolipid metabolites given the limited data.
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Figure 9: Experimental data and model results for C16:0 sphingolipid metabolites in wild
type cells (reference system): abscissa - time (hours), ordinate – experimentally normalized
sphingolipid metabolite amounts (pmol/mg protein); scatterplots represent in vitro exper-
imental data (median and range indicated where available), broken lines represent in silico
model results.
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3.1.1.3 Treated cells ( plant system) without comparator

Figure 9 shows the experimental data and model results of pathway dynamics in treated

cells in terms of sphingolipid metabolite amounts using the generalized mass action (GMA)

state-space model without the comparator.

For Sa*, the median data suggests that Sa increases very quickly at first until time

t = 2h, then decreases almost immediately towards a steady state at t = 3h. However,

the rate of the initial increase may be overestimated given that the measurements for Sa

at t = 1, 2h are spread over a larger range compared to measurements at subsequent times.

The data for SaP is more consistent throughout the course of the experiment, which shows

that SaP increases only slightly over time.

For So*, the data suggests that So increases continually throughout the course of ex-

periment, although the range of measurements for So is much larger at times t = 5, 6h

compared to the preceding time. The data for SoP is similar to that for SaP and is consis-

tent throughout, which shows that SoP also increases only slightly over time.

Technical replicates were not available for DH*. However, the available data does suggest

gradual changes over time. DHCer appears to increase quickly from t = 1h to t = 2h, then

decreases more gradually from t = 3h to t = 5h. DHGC appears to remain unchanged

throughout the course of experiment. DHSM appears to increase quickly from t = 1h to

t = 2h before approaching a steady state subsequently.

For Cer*, the experimental data is highly consistent across all replicates for GC and

SM, as can be seen from the small range of measurements, but not for Cer where the range

of measurements for Cer is much larger at times t = 2, 3h compared to at other times. The

data suggests that Cer increases quickly from t = 1h to t = 2h, then decreases gradually

from t = 2h to t = 5h. DHGC increases only very slightly till t = 6h. SM increases

uniformly and at a slightly higher rate over the same period of time.

Comparing the model results with experimental data qualitatively, in silico sphingolipid

metabolite amounts based on the GMA state-space model without comparator are a good

fit to the data for 5 metabolite species (SaP, SoP, DHGC, GC, and SM), where they fall

clearly and consistently within the range of measurements for these metabolites. However,
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for 4 metabolite species (Sa, So, DHCer, DHSM, and Cer), the model results consistently

underestimate the experimental data. Furthermore, for 2 species (DHCer and Cer), the

model results do not reflect changes in the experimental data sufficiently, in particular

where rapid increases in the measured data from t = 2h to t = 3h followed by more gradual

decreases from t = 1h to t = 5h are not captured in the state-space model.
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Figure 10: Experimental data and model results for C16:0 sphingolipid metabolites in
treated cells (plant system) without comparator: abscissa - time (hours), ordinate – ex-
perimentally normalized sphingolipid metabolite amounts (pmol/mg protein); scatterplots
represent in vitro experimental data (median and range indicated where available), broken
lines represent in silico model results.
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3.1.1.4 Root-sum-square (RSS) error in wild type and treated cells state-space model

Compared to model results for the wild type (Figure 8), model results for the treated cells

(Figure 9) are not as good a fit to the experimental data. In particular, the model results

for the treated cells are observed to have the poorest during intervals where significant

changes are recorded in the measurement data. In terms of root-sum-square (RSS) error,

the goodness-of-fit of the GMA state-space model of both wild type and treated cells without

comparator is quantified and reported in Table 3. The RSS error is also equivalent to the

L2-norm between model results and experimental data taken at discrete times, i.e., where

t = 0, 1, 2, ..., 6. Taken together, these observations show that although the same algorithm

was used for parameter estimation, i.e., a modified genetic algorithm described in Section

2.4.1, model results based on these estimated state-space parameters still differ in accuracy

of matching experimental data for different datasets.
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Table 3: State-space error: C16:0 wild type and treated cells without comparator

Wild type Treated cells \

C16:0 sphingolipids

Sa 0.0002 61.4536

SaP 0.0004 5.5469

DHCer 6.9245 327.3739

DHGC 16.8494 3.0832

DHSM 6.0871 171.2229

Cer 4.7858 213.9073

GC 9.1085 41.2140

SM 88.0422 19.6755

So 20.2075 99.8462

SoP 2.4847 9.4587

Accuracy of state-space GMA model in terms of root-sum-square (RSS) error of in silico
model results compared to in vitro experimental data in wild type and \ treated cells
without comparator.
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3.1.1.5 Treated cells ( plant system) with comparator

Figure 10 shows the experimental data and model results of pathway dynamics in treated

cells in terms of sphingolipid metabolite amounts using the generalized mass action (GMA)

state-space model with the comparator. In particular, the model results are a good fit to

the experimental data for 4 metabolite species (So, SoP, DHGC, and DHSM). The model

results underestimate the measurement data for 1 metabolite species (Sa), and overestimate

the data for 3 metabolite species (SaP, GC, and SM). For 2 metabolite species (DHCer and

Cer), the model results do not capture the transient trend of the sphingolipid pathway

dynamics from time t = 1h to t = 5h.

In addition, to illustrate the effect of the comparator model to simulate state-space

pathway dynamics in the treated cells, Table 5 shows the quantitative accuracy of the model

results to experimental data in terms of comparison between the treated cells with and

without comparator. It is noteworthy that the quantitative comparison shows that model

accuracy in simulating state-space pathway dynamics is comparable in both the existing

approach using GMA without comparator as in the proposed approach with comparator.
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Figure 11: Experimental data and model results for C16:0 sphingolipid metabolites in
treated cells (plant system) with comparator: abscissa - time (hours), ordinate – experi-
mentally normalized sphingolipid metabolite amounts (pmol/mg protein); scatterplots rep-
resent in vitro experimental data (median and range indicated where available), broken
lines represent in silico model results.
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Table 4: State-space error: C16:0 treated cells with and without comparator

Without comparator With comparator

Treated cells only

Sa 61.4536 70.1442

SaP 5.7469 8.2915

DHCer 327.3739 346.0480

DHGC 3.0832 2.9421

DHSM 171.2229 176.7805

Cer 213.9073 227.8527

GC 41.2140 46.6592

SM 19.6755 11.2155

So 99.8462 29.9782

SoP 9.4587 4.8419

66



3.1.2 Steady-state feedback

Figures 12 and 13 shows the key model outcome, i.e., predicted steady-state pathway feed-

back in terms of input and aggregate state feedback as well as individual sphingolipid

metabolite feedback based on the proposed comparator model of homeostasis in C16:0 sph-

ingolipid de novo biosynthesis in response to single-gene (SPT) overexpression in HEK

cells.

Figure 12 shows the predicted steady-state pathway feedback in treated cells in terms

of 2 components: (a) system input and sphingolipid precursor, palmitoyl-CoA (PalCoA),

ur(t), and (b) aggregate state feedback from pathway sphingolipid metabolites ux(t). At

steady-state, the magnitude of the feedback suggests the contribution of each component to

homeostasis, i.e., a larger magnitude indicate greater contribution, and sign (+/-) indicates

either enhancement (positive feedback) or inhibition (negative feedback) to the pathway.

The range indicated at discrete time, i.e., t = 1, 2, ..., 6, is the result of sensitivity analysis

of these model results in response to potential errors in state-space parameter estimation

(as discussed in Section 2.4.1).

From the onset, i.e., at time t = 0h, ur(t) oscillates for a very brief period of time but

with large peak-to-peak amplitude, then quickly decreases from the zero initial condition

to settle at steady-state (approximately −20). On the other hand, throughout the course

of simulation, ux(t) increases steadily from the zero initial condition to settle at steady-

state (approximately +30). At steady-state, the magnitude of feedback in each of these

components is similar but in different directions, i.e., the different signs suggest that input

feedback ur(t) is inhibited while aggregate state feedback ux(t) is enhanced as a result of

homeostasis.
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Figure 12: Predicted steady-state feedback for C16:0 sphingolipid metabolites pathway in
treated cells in terms of: (a) system input and sphingolipid precursor, palmitoyl-coA (Pal-
CoA), ur(t) (blue), and (b) aggregate state feedback from pathway sphingolipid metabolites
ux(t) (red) - x-axis: time (hours), y-axis: magnitude (dimensionless), error bars: standard
deviation from state-space parameter sensitivity analysis
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Figure 13 shows the predicted steady-state feedback gain from individual pathway sphin-

golipid metabolites hx(t). These feedback gain are dimensionless; however, at steady-state,

the magnitude and sign of these feedback values may be interpreted to suggest differential

activity in pathway homeostasis. More precisely, the larger the magnitude, the greater

the feedback; furthermore, the sign (+/-) of the gain values indicate either enhancement

(positive feedback) or inhibition (negative feedback) to the pathway. In addition, the range

indicated at discrete time, i.e., t = 1, 2, ..., 6, is the result of sensitivity analysis of these

model results in response to potential errors in state-space parameter estimation (as dis-

cussed in Section 2.4.1).

Sa, SaP, So, and SoP are sphingoid bases; DHCer, DHGC, DHSM, Cer, GC, and SM

are sphingolipids. Thus, from Figure 13:

(top left) Feedback gain for sphinganine (Sa) decreases quickly from the zero initial con-

dition to settle at steady-state (approximately −1); there is no noticeable change in

feedback gain for sphinganine-phosphate (SaP).

(top right) There is no noticeable change in feedback gain for sphingosine (So); however,

feedback gain decreases quickly from the zero initial condition to settle at steady-state

(approximately −1) for sphingosine-phosphate (SoP).

(bottom left) Feedback gain for dyhydroceramide (DHCer) increases quickly from the zero

initial condition to settle at steady-state (approximately +1); on the other hand, it de-

creases quickly from the zero initial condition to settle at steady-state (approximately

−1) for dihydroglucosylceramide (DHGC) and dihydrosphingomyelin (DHSM).

(bottom right) Feedback gain for ceramide (Cer) decreases gradually from the zero initial

condition and approaches −0.07 at time t = 6h; there is no noticeable change from

the zero initial condition for glucosylceramide (GC) and sphingomyelin (SM).
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Figure 13: Predicted steady-state feedback for individual C16:0 sphingolipid metabolites
in treated cells - x-axis: time (hours), y-axis: magnitude (dimensionless), error bars: stan-
dard deviation from state-space parameter sensitivity analysis
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3.2 Biological interpretation and verification

3.2.1 Pathway input and aggregate state feedback

From Figure 12, these model results suggest that in response to single-gene (SPT) overex-

pression in treated cells, and when sphingolipid precursor PalCoA is added to the cells in

excess amounts relative to intracellular sphingolipid metabolite levels, the metabolic effect of

the pathway input (PalCoA) at steady-state is to inhibit sphingolipid de novo biosynthesis.

On the other hand, the collective metabolic effect of pathway sphingolipid metabolites at

steady-state is to enhance de novo biosynthesis. This observation suggests that, in this case

of serine pamitolytransferase (SPT) upregulation (as a result of single-gene overexpression)

where SPT is the enzyme that catalyzes for the initial pathway reaction of condensation

between PalCoA and L-serine to form sphinganine, the excess input and reaction substrate

PalCoA also inhibits the pathway dynamics.

This implication is intriguing in that in terms of controller design, such a regulatory

strategy is also very specifically tuned to the type of system input. From a biochemical

perspective, given that there may be only a limited number of admissible pathway inputs,

such a regulatory strategy may be a viable option to maintain pathway homeostasis. For

instance, there could be molecular mechanisms to slow the rate of extracellular palmitate

uptake [54, 98, 105], reduce the rate of conversion from palmitate to PalCoA, or even

increase the rate of other enzymatic reactions that require PalCoA as a substrate. Subse-

quently, given that PalCoA is an integral component of sphingolipid metabolites at least

in terms of molecular structure, the implication that regulation of the sphingolipid de novo

biosynthesis pathway may be highly dependent on intracellular PalCoA levels should not

be too surprising.

The possibility that levels of intracellular PalCoA may be moderated as a result of SPT

overexpression could also be interpreted as a result of experimental procedure, i.e., where

only data on dual-chain isotope-labeled sphingolipid metabolites was used to develop this

model (see Section 2.4.1 on parameter estimation). It could be that in reality, regardless

of isotope-labeling, sphingolipid de novo biosynthesis and turnover is increased in SPT

overexpressed cells, which leads to increased palmitate that is subsequently converted back
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to PalCoA so that it is available to re-enter the pathway. Subsequently, because only

data on dual-labeled sphingolipids is used for parameter estimation, it may appear that

the amount of 13C-labeled PalCoA is moderated relative to the levels of all intracellular

PalCoA, labeled or otherwise. This scenario may be tested experimentally by improving

the tracking of various pools of labeled and unlabeled palmitate and PalCoA using mass

spectrometry.
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3.2.2 Individual sphingolipid metabolite feedback

Steady-state feedback gain in individual sphingolipid metabolites may be interpreted as

follow: relative to other sphingolipid metabolites such as So and Cer, steady-state feedback

gain from Sa, SoP, DHCer, DHGC, and DHSM is significantly different from the zero

initial condition. This suggests that these sphingolipid metabolites may contribute more

actively in pathway homeostasis. Furthermore, these particular sphingolipid metabolites

also contribute to cell signaling. In particular, Sa and SoP are also cell signaling molecules

that are reported to activate growth stimulation: Sa reverses growth inhibition [145] while

SoP activates growth stimulation [148, 149]. In addition, So and Cer are also reported to

activate growth inhibition [35, 111, 174].

Taken together in the context of pathway homeostasis, the similarities and differences

in steady-state feedback gain for these sphingolipid signaling metabolites, which activate

opposing responses, suggests that the experimental treatment, i.e., SPT overexpression at

these levels, leads to growth stimulation in HEK cells [167]. Clinically, SPT overexpression

is also implicated in cancer cell metastasis in human tumors [29].

Thus, in general, model results and interpretation from Figures 12 and 13 are consistent

with current knowledge of sphingolipid biology (summarized in Table 5). The robustness of

these model results, i.e., predicted steady-state feedback, in response to potential errors in

parameter estimation underscores the utility and promise the proposed comparator model

to simulate and predict homeostatic mechanisms in a highly regulated metabolic pathway.

Furthermore, these model results and present interpretations raise rather new and perhaps

interesting questions with regard to more specific aspects of homeostasis in sphingolipid de

novo biosynthesis pathway that were not previously studied.
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3.2.3 Additional testing with 1µM 4HPR

4HPR (4-hydroxyphenylretinamide) is a synthetic retinoid that is under clinical evaluation

as a therapeutic agent in a variety of cancers. It is reported to restrain tumor growth

by inducing apoptosis. However, the required effective dosage to achieve toxicity differs

significantly in SPT overexpressing cells and wild type HEK cells. In particular, a higher

dose of 4HPR is required in SPT overexpressing cells compared to wild type HEK cells to

achieve observable, or effective, cell toxicity (Figure 14).

In particular, although the mode of action, i.e., molecular mechanisms, of 4HPR has been

linked to ceramide metabolism (Figure 15), its systemic effects are not fully understood.

With respect to the three key enzymes involved in de novo sphingolipid synthesis, 4HPR is

reported to enhance the activity of (a) SPT, i.e., serine palmitoyl-transferase that catalyzes

the reaction of serine and palmitoyl-coA to form sphinganine (Sa), (b) (DH)CerS, i.e.,

(dihydro)ceramide synthase that catalyzes the formation of (dihydro)ceramide (DHCer)

from sphinganine (Sa), and inhibits the activity of (c) DES, i.e., desaturase that catalyzes

the formation of ceramide (Cer) from (dihydro)ceramide (DHCer). Subsequently, from

a modeling perspective, the effect of 4HPR on sphingolipid de novo biosynthesis can be

interpreted as a change in state-space parameters because the reaction rate constants are

altered. In particular, 4HPR treatment is similar to SPT overexpression to the extent that

SPT is overexpressed in both treatments.
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Figure 14: Effect of 4HPR on SPT and HEK cell viability – larger dose of 4HPR is required
to achieve effective toxicity in SPT cells compared to wild type HEK cells: y-axis –number
of viable cells (% of cells without 4HPR, experimental data), x-axis – 4HPR dosage
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Figure 15: Action of 4HPR on sphingolipid metabolism: 4HPR enhances the activity of
enzymes SPT, (DH)CerS, and inhibits DES
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As a result of 4HPR treatment, from the known mechanisms of 4HPR (Figure 15),

intracellular levels of Sa and DHCer are expected to increase while Cer levels are expected

to decrease in HEK cells. Experimental data in Figure 16 illustrates the measured changes

in the ratio of intracellular sphingolipid metabolite levels DH*:Cer* at time t = 24h after

4HPR treatment, which is as expected in HEK cells based on the current understanding of

4HPR mechanisms on sphingolipid metabolism (Figure 15). However, the same expected

changes in sphingolipid metabolite levels in SPT cells are not observed.

Because 4HPR treatment is similar to SPT overexpression to the extent that SPT ac-

tivity is enhanced in both treatments, model results in terms of predicted steady-state

feedback is verified in part by comparing Figures 13 and 16, where the predicted steady-

state feedback (Figure 13) is quantitatively consistent with the observed changes in ratios

of sphingolipid metabolite levels at time t = 24h based on the available experimental data

(Figure 16). In other words, quantitative agreement of the predicted steady-state feedback

with additional independent experimental data suggests that the model predictions can be

used to identify, without prior knowledge, which pathway metabolites may be responsible

for differences in SPT vs. HEK cell response to 4HPR treatment, i.e., which metabolites

may be controllable or are more involved in pathway homeostasis.

From a second perspective (that is not necessarily exclusive from the first), the predicted

steady-state feedback specific to modeling homeostasis as a result of SPT overexpression

could also contribute to a more comprehensive study to understand the metabolic effects

of 4HPR by deconstructing its known mechanisms independently. In this case, modeling

the effect of SPT overexpression, and its predicted steady-state feedback from available

data, is the first step in testing and modeling individual mechanisms of 4HPR separately

before these effects are combined. Consequently, quantitative agreement between the model

results, i.e., predicted steady-state feedback, with independent 4HPR response data should

lend confidence that the proposed approach using a comparator model is viable, given

that the proposed approach and comparator model is built only on experimental data

from SPT overexpression that represents only one of three reported mechanisms of 4HPR.

Subsequently, future work may apply the proposed approach similarly but on other data
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from (DH)CerS overexpression and DES underexpression separately in order to complete

the 4HPR response model.

Thus, the proposed approach using a comparator model to reverse engineer homeostasis

in metabolic pathways is useful in providing (a) a numerical approach to predict quantitative

differences in sphingolipid metabolite levels observed between SPT and HEK cells as a result

of specific experimental treatments, and (b) an analytical paradigm, in terms of homeostasis

and control, to try and answer why these differences are observed.
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Figure 16: Effect of 1µM 4HPR on DHCer/Cer levels (experimental data): DHCer:Cer
ratios are increased in HEK cells, which is consistent with expectation of increased DHCer
and decreased Cer levels; changes in SPT ratios are consistent with predicted steady-state
feedback (Figure 13)
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3.3 Generality of proposed approach

3.3.1 Application to C26:0 sphingolipid metabolites

To demonstrate the generality of the proposed approach, the comparator model is applied

to a second, independent dataset of C26:0 sphingolipid metabolites. Figures 17 and 18 show

the experimental data and model results, in terms of sphingolipid metabolite amounts, for

wild type and treated cells based on a similar GMA state-space model of pathway dynamics.

For the wild type (Figure 17), no data were available for Sa*, and technical replicates were

not available for DH*. For treated cells (Figure 18), technical replicates were not available

for DH*.

C16:0 and C26:0 sphingnolipid metabolites have the same pathway topology for de novo

biosynthesis, which also draws on a common pool of sphingolipid precursor PalCoA as the

initial pathway reaction substrate. However, experimental data shows that the pathway

dynamics of C26:0 sphingolipid metabolites is very different from the C16:0 sphingolipid

metabolites. In both wild type and treated cells, similar amounts of sphingoid bases, So*,

are observed for both the C16:0 and C26:0 sphingolipid pathways, but slightly less dihy-

drosphingolipids, DH*, and significantly less sphingolipids, Cer*, are detected in the C26:0

pathway compared to the C16:0 pathway. Because homeostasis is driven primarily by

changes in system dynamics, differences in pathway dynamics between both systems from

experimental data should be captured in the model results as well.

In Figure 17 for wild type cells, for So*, experimental data show that the amount of

So increases gradually from t = 0h and settles to steady-state at t = 4h. The amount of

SoP remains low over the course of experiment. For DH*, noticeable changes are observed

in DHCer over the course of experiment but without any obvious discernible trend, while

amounts of DHGC and DHSM remain low throughout. For Cer*, the experimental data

show that no dual-labeled Cer, GC, or SM were detected. The model results do not fit well

for most metabolites, where they tend to overestimate the experimental data.

In Figure 18 for treated cells, for Sa*, the experimental data shows that Sa increases

quickly from t = 0h to t = 2h, then decreases to settle at steady-state by t = 6h. SaP in-

creases gradually over the course of experiment. For So*, both So and SoP increase steadily
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throughout the course of experiment, but So increases at a much faster rate. For DH*, the

experimental data show that no dual-labeled DHCer, DHGC, or DHSM were detected. For

Cer*, Cer and SM increase slightly after t = 2h and t = 5h correspondingly while no GC

is detected. Qualitatively, the model results are a good fit with the experimental data for

5 metabolite species (SaP, SoP, DHGC, DHSM, and GC), fair for 4 metabolite species (Sa,

So, Cer, and SM), and poor for 1 metabolite species (DHCer).

Figure 19 shows the experimental data and model results for C26:0 sphingolipid metabo-

lites in treated cells with the comparator model. Qualitatively, the model results are a good

fit for 5 metabolite species (SaP, SoP, DHGC, DHSM, and GC), fair for 3 metabolite species

(Sa, So, and Cer), and poor for 2 metabolite species (DHCer and SM). Table 6 shows a

quantitative measure of the accuracy of these model results in matching experimental data

at discrete time in terms of RSS error. With regard to the GMA state-space model of

pathway dynamics (top 2 rows), the model results are a better fit to the experimental data

for the wild type than treated cells. Comparing the model results for treated cells with and

without the comparator model (bottom 2 rows), goodness-of-fit differs most significantly for

DH*, with an increase in RSS error of 19.4% with the comparator model, while RSS error is

decreased for the other groups of sphingolipid metabolites. Overall, RSS error increases by

18.9% with the comparator model, where the increase in RSS error for DH* is most likely

the primary factor for the difference.
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Figure 17: Experimental data and model results for C26:0 sphingolipid metabolites in
wild type cells (reference system): abscissa - time (hours), ordinate – experimentally nor-
malized sphingolipid metabolite amounts (pmol/mg protein); scatterplots represent in vitro
experimental data (median and range indicated where available), broken lines represent in
silico model results.
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Figure 18: Experimental data and model results for C26:0 sphingolipid metabolites in
treated cells (plant system) without comparator: abscissa - time (hours), ordinate – ex-
perimentally normalized sphingolipid metabolite amounts (pmol/mg protein); scatterplots
represent in vitro experimental data (median and range indicated where available), broken
lines represent in silico model results.
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Figure 19: Experimental data and model results for C26:0 sphingolipid metabolites in
treated cells (plant system) with comparator: abscissa - time (hours), ordinate – experi-
mentally normalized sphingolipid metabolite amounts (pmol/mg protein); scatterplots rep-
resent in vitro experimental data (median and range indicated where available), broken
lines represent in silico model results.
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Table 6: State-space error: C26:0 sphingolipid metabolites

Sa* DH* Cer* So* all

C26:0

Wild type n/a 13.78 0.29 458.23 458.43

Treated cells without comparator 54.10 860.87 0.86 104.56 868.88
] with comparator 48.88 1027.90 0.82 95.07 1033.40

(-9.6) (+19.4) (-4.7) (-9.1) (+18.9)

] percentage change over RSS error in treated cells without comparator
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3.3.1.1 Steady-state feedback

Figures 20 and 21 shows the key model outcome, i.e., predicted steady-state pathway feed-

back in terms of input and aggregate state feedback as well as individual sphingolipid

metabolite feedback based on the proposed comparator model of homeostasis in C26:0 sph-

ingolipid de novo biosynthesis in response to single-gene (SPT) overexpression in HEK cells.

Because the C26:0 sphingolipid data and biology is different from the C16:0 metabolites, it

is expected that the model results, i.e., predicted steady-state feedback, are different from

the latter case.

Figure 20 shows the predicted steady-state pathway feedback in treated cells in terms

of 2 components: (a) system input and sphingolipid precursor, palmitoyl-CoA (PalCoA),

ur(t), and (b) aggregate state feedback from pathway sphingolipid metabolites ux(t). At

steady-state, the magnitude of the feedback suggests the contribution of each component to

homeostasis, i.e., a larger magnitude indicate greater contribution, and sign (+/-) indicates

either enhancement (positive feedback) or inhibition (negative feedback) to the pathway.

Both components exhibit a brief period of transient oscillation from t = 0h to t = 1h with

similar frequency. However, the peak-to-peak amplitude of oscillation is significantly larger

for ur(t) at ∼ 270 compared to ux(t) at ∼ 140. In addition, ur(t) settles to steady-state

at ∼ +130 while ux(t) settles to steady-state at ∼ 0. Compared to C16:0 sphingolipids,

the dynamics of feedback control in C26:0 sphingolipids are clearly different in terms of

period and amplitude of transient oscillations. At the same time, these feedback dynamics

are consistent with designing a control policy that utilizes the least resources for pathway

regulation, which is similar to the case for C16:0 sphingolipids.

Figure 21 shows the predicted steady-state feedback gain from individual pathway sphin-

golipid metabolites hx(t). These feedback gain are dimensionless; however, at steady-state,

the magnitude and sign of these feedback values may be interpreted to suggest differential

activity in pathway homeostasis. More precisely, the larger the magnitude, the greater

the feedback; furthermore, the sign (+/-) of the gain values indicate either enhancement

(positive feedback) or inhibition (negative feedback) to the pathway.

The steady-state feedback gain is non-zero for 5 metabolite species (PalCoA, So, DHGC,
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DHSM, and GC), but is unchanged from the zero initial condition for the other sphingolipid

metabolites. Thus, Figures 19 and 20 show that the predicted steady-state feedback gain

for C26:0 sphingolipid metabolites are different from the C16:0 sphingolipid metabolites,

which suggests a different set of homeostatic interactions may be responsible for pathway

regulation in this system. On the other hand, predicted steady-state feedback due to system

input palmitate ur(t) for both C16:0 and C26:0 sphingolipid metabolites are similar in that

PalCoA is suggested to have a self-regulatory role, where excess input PalCoA appears also

to inhibit the dynamics of sphingolipid de novo biosynthesis.

From a modeling perspective, the significance of these model results is that the proposed

approach, using a comparator model to reverse engineer homeostasis in a highly regulated

metabolic pathway, can be applied to other datasets in general. Because of a lack of prior

knowledge, the biological interpretation and verification of these model results are not dis-

cussed in detail here. Furthermore, the model results are consistent with the understanding

that homeostasis is driven primarily by pathway dynamics, as opposed to pathway topology,

which can be derived directly from time-series experimental data.
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Figure 20: Predicted steady-state feedback for C26:0 sphingolipid metabolites pathway in
treated cells in terms of: (a) system input and sphingolipid precursor, palmitoyl-coA (Pal-
CoA), ur(t) (blue), and (b) aggregate state feedback from pathway sphingolipid metabolites
ux(t) (red) - x-axis: time (hours), y-axis: magnitude (dimensionless)
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Figure 21: Predicted steady-state feedback for individual C26:0 sphingolipid metabolites
in treated cells - x-axis: time (hours), y-axis: magnitude (dimensionless)
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3.4 Summary

In summary, in silico results of the proposed approach using a comparator model to reverse

engineer homeostasis in a highly regulated metabolic pathway have shown:

• (a) the efficacy of the proposed comparator model in capturing observed pathway

dynamics, and (b) robustness of predicted steady-state pathway feedback in response

to simulated errors in state-space parameter estimation,

• the validity of predicted steady-state pathway feedback in the context of homeostasis

in C16:0 sphingolipid de novo biosynthesis, by comparison to literature as well as

independent data on measured changes in sphingolipid metabolite levels in response

to 4HPR dosage in both treated and wild type cells, and

• the generality of the proposed modeling approach, by applying the comparator model

to a different metabolic system using independent data on C26:0 sphingolipid metabo-

lites.

Using C16:0 sphingolipid de novo biosynthesis as a case study, the proposed approach to

reverse engineer pathway homeostasis using a comparator model resulted in the prediction

of steady-state pathway feedback, which is qualitatively and quantitatively verified with lit-

erature as well as additional independent experimental data. Furthermore, the comparator

model is also applied to a separate independent dataset on C26:0 sphingolipids, where dif-

ferences in model results are also consistent with differences in experimental data between

the 2 datasets. As an initial study in ”the use of existing techniques in well-developed areas

of control theory to analyze problems of interest to biologists” [146], the outcomes of this

case study on C16:0 sphingolipid metabolites have also been published in [125, 127].
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CHAPTER IV

FUTURE WORK

Using C16:0 sphingolipid de novo biosynthesis as a case study, the concept, development,

application, and verification of the proposed approach in using a comparator model to

reverse engineer homeostasis in a highly regulated metabolic pathway have been discussed

in the previous chapters. So far, the model results, i.e., predicted steady-state feedback to

capture homeostatic pathway regulation, are encouraging and should warrant at least some

further investigation in this area. This dissertation is an initial study of what will hopefully

become a longer program in cellular control. In this chapter, I discuss limitations of the

proposed comparator model and existing experimental data well as potential biomedical

applications of the proposed approach.

4.1 Model and data limitations

4.1.1 Modeling nonlinear pathway dynamics

Using generalized mass action (GMA) to simplify system dynamics in this case study, a

linear system of first-order ODEs is used to describe what could very possibly be nonlin-

ear pathway dynamics. To account for nonlinear pathway dynamics, additional modeling

parameters in terms of the plant and comparator dynamics could be written as follows:

~̇x(t) = A~x(t) +~b[u(t) + ~α(t)TΦ(~x(t))] (31)

u(t) = ~hx(t)T~x(t) + hr(t)r(t)− ~̂α(t)TΦ(~x(t)) (32)

˙̂
~α(t) = ΓαΦ(~x(t))~e(t)TP~b (33)

where Φ(~x(t)) is a set of predefined nonlinear parameters, ~α(t) is the true contribution

of these parameters to the underlying pathway dynamics, and ~̂α(t) approximates the true

contribution of these terms.
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Particular nonlinear terms could be derived from the experimental data [137], although

such approaches for parameter estimation in dynamic nonlinear systems do not rely on any

prior knowledge of the system. Instead, model ’building blocks’ that are generic mathemati-

cal functions that are not specific to the pathway biochemistry are tested for goodness-of-fit

to the experimental data. As a result, such approaches to estimating nonlinear parameters

may not provide any biological basis to support the parameters. Nonetheless, although

it is beyond the scope of this dissertation, such a ”model-free”, or ”top-down”, approach

to parameter estimation may still be useful to uncover radically new descriptions of the

dynamics of metabolic pathways in the long term by essentially rewriting the current laws

of biochemistry.

At the same time, to avoid data over-fitting, i.e., where model parameters may be

added indiscriminately for the sole purpose of reducing error between model results and

experimental data, measures of goodness-of-fit such as the Akaike information criterion

[1, 69] may be useful to quantify the tradeoffs between precision and complexity of the

model. For any proposed model to be of interest and utility to the field of biology at

present, mathematical terms to model pathway dynamics must be informed and justified

by an understanding of the underlying pathway biochemistry and dynamics.

4.1.2 Exploring control models: additional data requirements

The proposed comparator model is only a basic component of standard, as well as more

advanced, controlled systems. In this case, its function is simple: to compute the difference

between the plant and reference system outputs, which is feedback to the plant system so

as to guide the plant to converge to the reference. However, in more advanced controllers,

the comparator output is examined more carefully in significantly greater detail such that

how the primary issue of interest lies in how the comparator output is, or may be, dealt

with in terms of feedback. Consequently, the objective in engineering control design is to

specify the appropriate feedback to achieve the desired system response.

Still, improved biological data acquisition is required in order to better meet, and in-

deed embrace, the theoretical and practical challenges of ”[using] existing techniques in
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well-developed areas of control theory to analyze problems of interest to biologists” [146].

Representative modes of (feedback) control are summarized in Table 7, where key features

of these various modes of control also suggest what experimental data may be useful to

explore and integrate, in the broad sense, the proposed approach using control theory to

reverse engineer homeostasis in biochemical systems more fruitfully. In other words, addi-

tional experimental data is needed to properly calibrate such models of homeostasis based

on control theory. Regardless, to achieve any real success, modelers surely need to work

more closely with experimentalists.

In particular, for example, because the key feature of adaptive control is that the plant

system is time-varying, i.e., where state-space parameters change with time, this suggests

one of two possible demands on experimental data: either the pathway must be sampled

more frequently, i.e., to gather time-series data, or over a contiguous period of experiment,

the plant system should be subject to a sequence of different experimental treatments and

such that each treatment affects the pathway dynamics differently. In the former case, the

contribution of more time-series data to modeling is to enable detection (and derivation)

of changes in reaction rate constants in real-time, i.e., to improve state-space parameter

estimation with significantly improved temporal resolution. In the latter case, changes in

the plant system as a result of a sequence of different experimental treatments also requires,

and results in, different parameters to describe pathway dynamics following each treatment.

In both cases, the effect of these changes in experimental procedure or data acquisition is

that the key feature of adaptive control can be satisfied, i.e., a time-varying system where

the state-space parameters change with time can be properly defined.

For robust control, apart from a fully known system, a range of inputs is required for

the estimation of controller parameters in order to establish limits of input perturbation

where it can be claimed that pathway homeostasis may indeed be described as such. Of

the representative control modes summarized in Table 7, the data requirements for robust

control may be the easier to meet, where the key factor to be varied could simply be the

magnitude of pathway input, e.g., precursor molecule for the metabolic pathway of inter-

est. Even so, depending on the resolution of the measurement instrumentation, sufficiently
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different levels of pathway input that still lead to the same steady-state behavior may still

be challenging to discern.

Another example: to apply optimal control as a model of homeostasis, where the desired

system performance as well as system dynamics must be fully specified, substantial a priori

knowledge of the metabolic pathway or system of interest will be useful, if not absolutely

necessary, to define these key features. Optimal control implies direction, either internal or

external, where system performance is driven towards achieving some known objective. Un-

der heavily-regulated conditions for externally-driven objectives, e.g., ensuring pre-defined

levels of particular metabolites for specific bioengineering projects, optimal control could

be a viable model of regulation (but not homeostasis) [48, 64]. On the other hand, it is

challenging to define ”desired” system performance for homeostasis in metabolic pathways

without controversy, given that biological variance all but ensures a range of acceptable (and

healthy) behaviors in the wild type. To do so will require conclusive evidence that deviation

of plant system response necessarily leads to ”destructive” outcomes that are detrimental to

cell survival. Still, in such cases, data on cancerous tumor cells could provide some support

to modeling homeostasis in metabolic pathways based on optimal control.

Finally, for proportional, integral, and derivative (PID) control to be an effective model

of homeostasis in metabolic pathways, a fully known system and coherent set of inputs are

required. At the same time however, because it can be directly applied to scalar representa-

tions of pathway systems, PID control may be advantageous over other control modes from

a modeling perspective in that even single-variable measurements, still sufficiently resolved

in time, may suffice to support model development. For instance, PID control (specifically

integral control) is reported to be an adequate model of regulation in bacterial chemotaxis

[177, 176]. Nonetheless, it should also be noted that where some terms of PID control may

seem more abstract than others, e.g., how integral control is defined in bacterial chemo-

taxis, a priori knowledge of the metabolic system goes a long way to illustrate how specific

forms of PID control may be implemented via some of the known underlying molecular

mechanisms.

95



T
a
b
le

7
:

R
ep

re
se

n
ta

ti
ve

co
n
tr

ol
m

o
d

es

M
o
d

e
K

ey
fe

at
u

re
(s

)
P

ri
or

k
n

ow
le

d
ge

R
es

u
lt

A
d

ap
ti

ve
T

im
e-

va
ry

in
g

sy
st

em
N

ot
re

q
u

ir
ed

R
ea

l-
ti

m
e

co
n
tr

o
l

re
sp

o
n

se

G
u

ar
an

te
ed

sy
st

em
st

a
b

il
it

y

R
ob

u
st

F
u

ll
y

k
n

ow
n

sy
st

em
an

d
k
n

ow
n

ra
n

ge
of

in
p

u
ts

S
om

e
re

q
u

ir
ed

,
to

d
et

er
m

in
e

li
m

it
of

ch
an

ge
in

p
ar

am
et

er
s

P
re

-d
et

er
m

in
ed

co
n
tr

o
l

re
sp

o
n

se
,

i.
e.

,
d

o
es

n
ot

re
ac

t
to

u
n

ex
p

ec
te

d
d

is
tu

r-
b

an
ce

G
u

ar
an

te
ed

sy
st

em
st

a
b

il
it

y

O
p

ti
m

al
F

u
ll

y
k
n

ow
n

sy
st

em
an

d
d

es
ir

ed
p

er
fo

rm
an

ce
ob

-
je

ct
iv

es

F
u

ll
y

re
q
u
ir

ed
,

to
sp

ec
if

y
ob

je
c-

ti
ve

fu
n

ct
io

n
fo

r
op

ti
m

iz
at

io
n

P
re

-d
et

er
m

in
ed

co
n
tr

o
l

re
sp

o
n

se
,

i.
e.

,
d

o
es

n
ot

re
sp

on
d

to
u

n
ex

p
ec

te
d

d
is

tu
r-

b
an

ce

G
u

ar
an

te
ed

sy
st

em
st

a
b

il
it

y

P
ID

F
u

ll
y

k
n

ow
n

sy
st

em
an

d
in

p
u

ts
S

om
e

re
q
u

ir
ed

,
to

tu
n

e
co

n
tr

ol
re

sp
on

se
P

re
-d

et
er

m
in

ed
co

n
tr

o
l

re
sp

o
n

se
,

i.
e.

,
d

o
es

n
ot

re
sp

on
d

to
u

n
ex

p
ec

te
d

d
is

tu
r-

b
an

ce

S
y
st

em
st

ab
il

it
y

m
ay

n
o
t

b
e

g
u

a
ra

n
te

ed

96



4.2 Biomedical applications

4.2.1 Studying molecular mechanisms

The predicted steady-state feedback indicates which specific metabolites may be involved

in potential homeostatic pathway interactions, but does not suggest how these homeostatic

interactions may be accomplished in vitro in terms of observable molecular mechanisms,

e.g., in terms of intracellular location, transport, or biochemistry of enzymatic reactions.

More precisely, for instance in this case study, a particular molecular mechanism that may

be of interest to biologists is how treated cells, i.e., SPT overexpressing cells, may sense

that increased amounts of sphingolipid precursor PalCoA are present to determine if the

balance of sphingolipid de novo biosynthesis and turnover is indeed upset. Could this be

accomplished at the molecular level via the rate at which extracellular palmitate is taken

up by the cells and converted to PalCoA?

Specific to this case study, because intracellular location is critical to sphingolipid

metabolism, molecular imaging techniques, e.g., using molecular beacons, may be the imme-

diate methods of choice to first determine if particular sphingolipid metabolites are indeed

co-localized so that subsequent enzymatic reactions could possibly occur and be detected.

Ultimately, unraveling such mechanisms at the molecular levels will go a long way to lend

substantial experimental support to the use of control theory to reverse engineer homeostasis

in metabolic pathways.

4.2.2 Impacting drug discovery and development

By identifying specific pathway metabolites that may be involved in homeostatic pathway

interactions based on predicted steady-state feedback, model results from the proposed ap-

proach may also contribute to the process of drug discovery and development, e.g., in terms

of identifying key pathway metabolites that may be targeted biochemically. Drug therapy is

a common treatment for chronic disease where homeostasis is disrupted but remains viable

[80]. However, drug-induced metabolic activity often conflict with homeostatic activities,

leading to undesirable side effects. This problem affects drug discovery and development

pipelines where drug candidates often fail in development because of latent toxicity.
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The drug discovery and development process is a pipeline that involves different phases.

In the discovery phase, disease targets and drug candidates are identified. In silico methods

currently used for target identification focus on algorithms for pattern matching sequences

and motifs, functional annotation, and mining expression datasets [93]. These methods tend

to identify singular targets, where less emphasis is placed on assessing the targets in the

context of metabolic pathways. Drug candidates are subsequently designed and evaluated

for potency towards these targets, commonly to knock out disease-specific pathways. In

the development phase, drug candidates are tested for toxicity in animal and human trials.

In current pipelines, the separation of drug discovery and development into distinct phases

has led to more failures than successes because ”with discovery now driven primarily by

chemistry and high-throughput screening, the biological effects and, in particular, the tox-

icity of new compounds is largely not appreciated until a compound enters development”

[158]. This results in a very low turnover rate of drug candidates from concept to clinical

deployment.

The prevalent strategy to improve the current situation is to try and increase the number

of drug candidates discovered such that the number of drugs that are safe for market is not

affected significantly. However, this does not improve the turnover rate and critically, it

does not alleviate the burden of costs involved in the process. The recent trend of corporate

mergers and acquisitions in the pharmaceutical industry reflects the growing financial strain

on drug discovery and development as a result. An alternative solution is to consider toxicity

earlier upstream in the discovery phase instead of doing so only in the development phase.

Thus, the proposed approach using a comparator model to reverse engineer homeostasis

in metabolic pathways provides an analytical framework to identify and interpret aberrant

metabolic effects in terms of interference with the dynamics of homeostasis in healthy path-

ways. In particular, in pathways affected by disease or drug toxicity, the clinical symptoms

can be viewed as the result of sub-par pathway feedback that leads the metabolic system to

undesirable, and ultimately unstable, points of equilibrium. It follows that a viable strategy

for drug intervention in such aberrant pathways may be to try and complement or lever-

age the action of these inferior ”homeostatic” feedback, instead of trying to knock out the
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pathway entirely. Consequently for drug discovery and development, drug toxicity may be

addressed by working with, not against, abnormal homeostatic activity in the context of

diseased pathways.

4.2.3 Analyzing case/control studies

Finally, the proposed approach using a comparator model to reverse engineer homeostasis

in metabolic pathways is a knowledge-based method, where the pathway dynamics of wild

type cells is defined as a reference response for the treated cells to approach. In fact, this

plant-reference paradigm is motivated by conventional experimental design in the field of

biology where effects of experimental treatment are commonly studied using stable cell

lines in comparison with the wild type, i.e., traditional case/control studies. Naturally, in

such studies, there is only a single difference as a result of experimental treatment, e.g.,

single-gene mutation, between the treated cells and wild type.

Where dynamics of the metabolic pathway(s) of interest do not evolve beyond the wild

type dynamics, such a plant-reference framework is justified where treated cells can be

assumed to follow the wild type behavior. Consequently, together with its demonstrated

generality in this dissertation, the proposed approach using a comparator model from en-

gineering control to reverse engineer homeostasis in metabolic pathways can be a useful

research tool to complement the analysis of data from traditional case/control studies in

the field of biology.

Furthermore, taking a broader perspective on this subject, in applied research clinical

data from individual patients in times of health may be similarly used as a reference to

shortlist options for molecular intervention, e.g., drug therapy, in times of disease. Data

collected from the patient in times of health may be used to build and calibrate a reference

system, while data from the same patient in times of disease may be used to estimate a plant

system. Thereafter, the clinical goal is guide the dynamics of the plant system to return to

the dynamics of the reference system. In other words, each patient may (rightfully) provides

her own ”healthy” data as a reference response, which addresses the problem of biological

variance in populations. Thus, if achieved, such a personalized approach to medicine stands
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in stark contrast to the use of population statistics to define standards of health for the

individual patient.

Even remaining within the limits of population (public) health, a reference system could

similarly be built and calibrated using data from healthy subjects to test novel intervention

treatments (as discussed in the previous Section 4.2.2). In other words, intervention therapy

could be predicted in silico in models of plant systems based on data from diseased patients.

Ultimately, such an application is based on the clinical need to unravel the figurative knot of

biochemical interactions as a result of increasingly common drug cocktail therapy to manage

”lifestyle diseases”, because in many cases it is no longer sufficient to merely predict the

initial or immediate patient response to particular drug therapies. As a result of such

chronic diseases, an increasing number of patients are already subject to specific dosing

regimens which may interfere with additional prescribed treatments.

100



APPENDIX A

ESTIMATED RATE CONSTANTS: C16:0 PATHWAY

Table 8: Estimated reaction rate constants: C16:0 sphingolipids, wild type

kSaP,Sa 0.0043

kDHCer,Sa 1.4431

kSa,SaP 0.0091

kSa,DHCer 1.0362e+04

kDHGC,DHCer 1.6826

kDHSM,DHCer 11.4186

kCer,DHCer 4.0843

kDHCer,DHGC 2.9521

kDHCer,DHSM 1.2753

kDHCer,Cer 79.9867

kGC,Cer 0.0345

kSM,Cer 0.0025

kSo,Cer 4.1425

kCer,GC 0.0297

kCer,SM 0.0654

kCer,So 7.0930

kSoP,So 9.1800

kSo,SoP 1.9684
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Table 9: Estimated reaction rate constants: C16:0 sphingolipids, SPT overexpressed

kSaP,Sa 0.0028

kDHCer,Sa 0.0736

kSa,SaP 0.2271

kSa,DHCer 14.5170

kDHGC,DHCer 35.6403

kDHSM,DHCer 8.5091

kCer,DHCer 13.1570

kDHCer,DHGC 0.0838

kDHCer,DHSM 3.9688

kDHCer,Cer 6.2111

kGC,Cer 6.1811e-06

kSM,Cer 0.0038

kSo,Cer 0.0876

kCer,GC 0.0302

kCer,SM 0.1353

kCer,So 0.3788

kSoP,So 13.9785

kSo,SoP 1.4213

102



APPENDIX B

ESTIMATED RATE CONSTANTS: C26:0 PATHWAY

Table 10: Estimated reaction rate constants: C26:0 sphingolipids, wild type

kSaP,Sa 5.6743e-05

kDHCer,Sa 2116.6

kSa,SaP 1.0271e-04

kSa,DHCer 1.1929e-04

kDHGC,DHCer 0.2069

kDHSM,DHCer 0.0047

kCer,DHCer 5.4449

kDHCer,DHGC 1.2146

kDHCer,DHSM 0.1711

kDHCer,Cer 62.8240

kGC,Cer 0.0853

kSM,Cer 0.2108

kSo,Cer 0.2823

kCer,GC 0.0164

kCer,SM 0.0015

kCer,So 1125.4

kSoP,So 0.0598

kSo,SoP 0.2289
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Table 11: Estimated reaction rate constants: C26:0 sphingolipids, SPT overexpressed

kSaP,Sa 0.05015

kDHCer,Sa 9.1878

kSa,SaP 0.1218

kSa,DHCer 1.7913e-06

kDHGC,DHCer 0.2244

kDHSM,DHCer 4.5129e-08

kCer,DHCer 173.11

kDHCer,DHGC 1.3972e-03

kDHCer,DHSM 3.065e-05

kDHCer,Cer 0.08087

kGC,Cer 0.2582

kSM,Cer 0.05618

kSo,Cer 2.1452e-06

kCer,GC 5.2146e-03

kCer,SM 1.6167e-04

kCer,So 112.16

kSoP,So 2.7933e-06

kSo,SoP 0.04899
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APPENDIX C

PHASE PLOTS: PREDICTED PATHWAY FEEDBACK
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(zoomed in, from top)

Figure 22: Feedback gain phase plot: C16:0 Sphinganine (Sa) - (axes: y, rate of change
d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 23: Feedback gain phase plot: C16:0 Sphinganine-phosphate (SaP) - (axes: y, rate
of change d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 24: Feedback gain phase plot: C16:0 Dihydroceramide (DHCer) - (axes: y, rate of
change d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 25: Feedback gain phase plot: C16:0 Dihydroglucosylceramide (DHGC) - (axes: y,
rate of change d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 26: Feedback gain phase plot: C16:0 Dihydrosphingomyelin (DHSM) - (axes: y,
rate of change d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 27: Feedback gain phase plot: C16:0 Ceramide (Cer) - (axes: y, rate of change
d/dt ; x, gain value; color, time)

111



(zoomed in, from top)

Figure 28: Feedback gain phase plot: C16:0 Glucosylceramide (GC) - (axes: y, rate of
change d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 29: Feedback gain phase plot: C16:0 Sphingomyelin (SM) - (axes: y, rate of change
d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 30: Feedback gain phase plot: C16:0 Sphingosine (So) - (axes: y, rate of change
d/dt ; x, gain value; color, time)
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(zoomed in, from top)

Figure 31: Feedback gain phase plot: C16:0 Sphingosine-phosphate (SoP) - (axes: y, rate
of change d/dt ; x, gain value; color, time)
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